4.6 Article

Development of Mechanically Reliable and Transparent Photochromic Film Using Solution Blowing Spinning Technology for Anti-Counterfeiting Applications

期刊

ACS OMEGA
卷 6, 期 41, 页码 27315-27324

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.1c04127

关键词

-

资金

  1. Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program

向作者/读者索取更多资源

This study presents the development of anti-counterfeiting mechanically reliable nanocomposites fabricated via solution blowing spinning technology, utilizing rare-earth doped aluminate strontium oxide phosphor nanoparticles. The resulting photochromic films demonstrate ultraviolet-stimulated anti-counterfeiting property and rapid reversible photochromism. The materials exhibit enhanced mechanical strength and hydrophobicity while maintaining transparency and original appearance.
Photochromic materials have attracted broad interest to enhance the anti-counterfeiting of commercial products. In order to develop anti-counterfeiting mechanically reliable composite materials, it is urgent to improve the engineering process of both the material and matrix. Herein, we report on the development of anti-counterfeiting mechanically reliable nanocomposites composed of rare-earth doped aluminate strontium oxide phosphor (RESA) nanoparticles (NPs) immobilized into the thermoplastic polyurethane-based nanofibrous film successfully fabricated via the simple solution blowing spinning technology. The generated photochromic film exhibits an ultraviolet-stimulated anti-counterfeiting property. Different films of different emissive properties were generated using different total contents of RESA. Transmission electron microscopy was utilized to investigate the morphological properties of RESA NPs to display a particle diameter of 3-17 nm. The morphologies, compositions, optical transmittance, and mechanical performance of the produced photochromic nanofibrous films were investigated. Several analytical methods were employed, including energy-dispersive X-ray spectroscopy, scanning electron microscopy, and Fourier-transform infrared spectrometry. The fibrous diameter of RESA-TPU was in the range of 200-250 nm. In order to ensure the development of transparent RESA-TPU film, RESA must be prepared in the nanosized form to allow better dispersion without agglomeration in the TPU matrix. The luminescent RESA-TPU film displayed an absorbance intensity at 367 nm and two emission intensities at 431 and 517 nm. The generated RESA-TPU films showed an enhanced hydrophobicity without negatively influencing their original appearance and mechanical properties. Upon irradiation with ultraviolet light, the transparent nanofibrous films displayed rapid and reversible photochromism to greenish-yellow without fatigue. The produced anti-counterfeiting films demonstrated stretchable, flexible, and translucent properties. As a simple sort of anti-counterfeiting substrates, the current novel photochromic film provides excellent anti-counterfeiting strength at low-cost as an efficient method to develop versatile materials with high mechanical strength to create an excellent market as well as adding economic and social values.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据