4.6 Article

Hydrothermal Synthesis of Biomass-Derived Magnetic Carbon Composites for Adsorption and Catalysis

期刊

ACS OMEGA
卷 6, 期 48, 页码 33000-33009

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.1c05116

关键词

-

资金

  1. EPSRC [EP/N509735/1]

向作者/读者索取更多资源

The study demonstrates the synthesis of magnetic iron-carbon composites from waste avocado seeds via hydrothermal carbonization, showing excellent performance in adsorption and catalytic applications. The solid catalyst has the advantages of being prepared from waste material and easy removal after reaction through magnetic separation. Furthermore, the carbon-based materials produced in this process have potential applications in energy storage and biopharmaceuticals.
The synthesis of magnetic iron-carbon composites (Fe/C) from waste avocado seeds via hydrothermal carbonization (HTC) has been demonstrated for the first time. These materials are shown to be effective in adsorption and catalytic applications, with performances comparable to or higher than materials produced through conventional processing routes. Avocado seeds have been processed in high-temperature water (230 degrees C) at elevated pressure (30 bar at room temperature) in the presence of iron nitrate and iron sulfate, in a process mimicking natural coalification. Characterization of the synthesized material has been carried out by X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectrometry (ICP-OES), Fourier-transform infrared spectroscopy (FT-IR), magnetometry, and through surface area measurements. The supported iron particles are observed to be predominately magnetite, with an oxidized hematite surface region. The presence of iron catalyzes the formation of an extended, ordered polymeric structure in the avocado seed-derived carbon. The magnetic Fe/C has been demonstrated as an adsorbent for environmental wastewater treatment using methylene blue and indigo carmine. Kinetic analysis suggests that the adsorbates are chemisorbed, with the positive surface charge of Fe/C being preferential for indigo carmine adsorption (49 mg g(-1)). Additionally, Fe/C has been evaluated as a heterogeneous catalyst for the hydroalkoxylation of phenylacetylene with ethylene glycol to 2-benzyl-1,3-dioxolane. Product yields of 45% are obtained, with 100% regioselectivity to the formed isomer. The solid catalyst has the advantages of being prepared from a waste material and of easy removal after reaction via magnetic separation. These developments provide opportunities to produce carbon-based materials for a variety of high-value applications, potentially also including energy storage and biopharmaceuticals, from a wide range of lignocellulosic biomass feedstocks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据