4.7 Article

Silver Nanoparticle Production Mediated by Vitis vinifera Cane Extract: Characterization and Antibacterial Activity Evaluation

期刊

PLANTS-BASEL
卷 11, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/plants11030443

关键词

nanoparticles; biosynthesis; antimicrobial activity; plant extract

资金

  1. [A2_FPBT_2021_044]

向作者/读者索取更多资源

This study confirmed that ethanolic Vitis vinifera cane extract combined with silver nitrate can effectively produce silver nanoparticles with significant antimicrobial properties against Pseudomonas aeruginosa bacteria. Moreover, the use of wine agriculture waste is an ecological and economical method for the production of silver nanoparticles.
The ever-growing range of possible applications of nanoparticles requires their mass production. However, there are problems resulting from the prevalent methods of nanoparticle production; physico-chemical routes of nanoparticle synthesis are not very environmentally friendly nor cost-effective. Due to this, the scientific community started exploring new methods of nanoparticle assembly with the aid of biological agents. In this study, ethanolic Vitis vinifera cane extract combined with silver nitrate was used to produce silver nanoparticles. These were subsequently characterized using UV-visible (UV-Vis) spectrometry, transmission electron microscopy, and dynamic light-scattering analysis. The antimicrobial activity of produced nanoparticles was tested against the planktonic cells of five strains of Gram-negative bacterium Pseudomonas aeruginosa (PAO1, ATCC 10145, ATCC 15442, DBM 3081, and DBM 3777). After that, bactericidal activity was assessed using solid medium cultivation. In the end, nanoparticles' inhibitory effect on adhering cells was analyzed by measuring changes in metabolic activity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay-MTT). Our results confirmed that ethanolic Vitis vinifera cane extract is capable of mediating silver nanoparticle production; synthesis was conducted using 10% of extract and 1 mM of silver nitrate. The silver nanoparticles' Z-average was 68.2 d nm, and their zeta potential was -30.4 mV. These silver nanoparticles effectively inhibited planktonic cells of all P. aeruginosa strains in concentrations less than 5% v/v and inhibited biofilm formation in concentrations less than 6% v/v. Moreover, minimum bactericidal concentration was observed to be in the range of 10-16% v/v. According to the results in this study, the use of wine agriculture waste is an ecological and economical method for the production of silver nanoparticles exhibiting significant antimicrobial properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据