4.7 Article

A Survey of Enhanced Cold Tolerance and Low-Temperature-Induced Anthocyanin Accumulation in a Novel Zoysia japonica Biotype

期刊

PLANTS-BASEL
卷 11, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/plants11030429

关键词

turfgrass; abiotic stress; anthocyanin biosynthesis; anthocyanin transport; RNA-seq

向作者/读者索取更多资源

This study collected a novel biotype of Zoysia japonica, YueNong-9 (YN-9), and conducted comprehensive research on its characteristics. The results showed that YN-9 exhibited longer leaves, higher cold tolerance, and increased chlorophyll content compared to the popular Z. japonica cultivar LanYin-3 (LY-3) in Southern China.
Zoysia japonica is a warm-season turfgrass that is extensively used in landscaping, sports fields, and golf courses worldwide. Uncovering the low-temperature response mechanism of Z. japonica can help to accelerate the development of new cold-tolerant cultivars, which could be used to prolong the ornamental and usage duration of turf. A novel Z. japonica biotype, YueNong-9 (YN-9), was collected from northeastern China for this study. Phenotypic measurements, cold-tolerance investigation, and whole-transcriptome surveys were performed on YN-9 and LanYin-3 (LY-3), the most popular Z. japonica cultivar in Southern China. The results indicated the following: YN-9 has longer second and third leaves than LY-3; when exposed to the natural low temperature during winter in Guangzhou, YN-9 accumulated 4.74 times more anthocyanin than LY-3; after cold acclimation and freezing treatment, 83.25 +/- 9.55% of YN-9 survived while all LY-3 leaves died, and the dark green color index (DGCI) value of YN-9 was 1.78 times that of LY-3; in YN-9, there was a unique up-regulation of Phenylalanine ammonia-lyase (PAL), Homeobox-leucine Zipper IV (HD-ZIP), and ATP-Binding Cassette transporter B8 (ABCB8) expressions, as well as a unique down-regulation of zinc-regulated transporters and iron-regulated transporter-like proteins (ZIPs) expression, which may promote anthocyanin biosynthesis, transport, and accumulation. In conclusion, YN-9 exhibited enhanced cold tolerance and is thus an excellent candidate for breeding cold-tolerant Z. japonica variety, and its unique low-temperature-induced anthocyanin accumulation and gene responses provide ideas and candidate genes for the study of low-temperature tolerance mechanisms and genetic engineering breeding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据