4.6 Article

Eliciting Plant Defenses Through Herbivore-Induced Plant Volatiles' Exposure in Sweet Peppers

期刊

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fevo.2021.776827

关键词

HIPVs; Frankliniella occidentalis; Orius laevigatus; gene expression; behavioral response

类别

向作者/读者索取更多资源

Insect herbivory activates plant defense mechanisms and releases herbivore-induced plant volatiles (HIPVs). This study found that HIPVs can induce defense responses in sweet pepper plants by upregulating jasmonic acid and salicylic acid signaling pathways. Furthermore, the HIPV-exposed plants repelled a sweet pepper pest and attracted its main natural enemy.
Insect herbivory activates plant defense mechanisms and releases a blend of herbivore-induced plant volatiles (HIPVs). These volatile compounds may be involved in plant-plant communication and induce defense response in undamaged plants. In this work, we investigated whether the exposure of sweet pepper plants to HIPVs [(Z)-3-hexenol, (Z)-3-hexenyl acetate, (Z)-3-hexenyl propanoate, (Z)-3-hexenyl butanoate, hexyl butanoate, methyl salicylate and methyl jasmonate] activates the sweet pepper immune defense system. For this, healthy sweet pepper plants were individually exposed to the each of the above mentioned HIPVs over 48 h. The expression of jasmonic acid and salicylic acid related genes was quantified. Here, we show that all the tested volatiles induced plant defenses by upregulating the jasmonic acid and salicylic acid signaling pathway. Additionally, the response of Frankliniella occidentalis, a key sweet pepper pest, and Orius laevigatus, the main natural enemy of F. occidentalis, to HIPV-exposed sweet pepper plants were studied in a Y-tube olfactometer. Only plants exposed to (Z)-3-hexenyl propanoate and methyl salicylate repelled F. occidentalis whereas O. laevigatus showed a strong preference to plants exposed to (Z)-3-hexenol, (Z)-3-hexenyl propanoate, (Z)-3-hexenyl butanoate, methyl salicylate and methyl jasmonate. Our results show that HIPVs act as elicitors to sweet pepper plant defenses by enhancing defensive signaling pathways. We anticipate our results to be a starting point for integrating HIPVs-based approaches in sweet pepper pest management systems which may provide a sustainable strategy to manage insect pests in horticultural plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据