4.7 Article

Microbial fuel cell for simultaneous caffeine removal and bioelectricity generation under various operational conditions in the anodic and cathodic chambers

期刊

出版社

ELSEVIER
DOI: 10.1016/j.eti.2021.102158

关键词

Bioelectricity generation; Caffeine degradation; Microbial fuel cell; Operational parameters; Oxygen reduction reaction

向作者/读者索取更多资源

A series of studies were conducted to evaluate the optimal performance of a double chambered microbial fuel cell for the treatment of caffeine. The results showed that operational parameters including organic substrate loading concentration, initial caffeine concentration, external resistance, and salinity had significant effects on the performance.
A series of studies of the effects of operational parameters including organic substrate loading concentration, initial caffeine concentration, circuit connection, external resistance and salinity were carried out to evaluate the optimal performance of a double chambered microbial fuel cell for the treatment of caffeine. The increment of organic substrate loading concentration at anode increased the maximum power density from 7.84 +/- 0.59 to 14.18 +/- 0.87 mW m(-2) but deteriorated the removal efficiency of caffeine in which only half of the removal efficiency of caffeine attained at 72 h at 1.500 g L-1 acetate (46.28 +/- 3.66 %) than that of 0.375 g L-1 (96.89 +/- 0.48 %). Initial caffeine concentration of 20 mg L-1 (95.31 +/- 1.83 %) achieved 2.40-fold higher removal efficiency of caffeine than that of 50 mg L-1 (39.58 +/- 2.83 %) at 48 h as saturated caffeine molecules hindered the oxygen reduction reaction and thus, fewer hydroxyl radicals were produced for the decomposition of caffeine. An optimal external resistance of 1000 Omega exhibited the best performance in terms of pollutants removal efficiency and power generation than that of 500 and 5000 Omega. Sodium chloride concentration of 0.580 g L-1 produced the highest maximum power density of 11.78 +/- 0.68 but reduced to 8.26 +/- 0.41 mW m(-2) at 0.696 g L-1 as high concentration of sodium ions caused dehydration of anodophilic cells which decreased the electron transfer ability of electrochemically active bacteria. (C) 2021 The Authors. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据