4.6 Article

Bottom Current Modification of Turbidite Lobe Complexes

期刊

FRONTIERS IN EARTH SCIENCE
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/feart.2021.752066

关键词

turbidite; contourite; lobe; deep-water; mixed system; ocean current; East Africa; Tanzania

资金

  1. Equinor ASA
  2. Climate Linked Atlantic Sector Science (CLASS) program (Natural Environment Research Council) [NE/R015953/1]

向作者/读者索取更多资源

This study reveals the interaction between submarine lobes and fine-grained sediment waves and contourite drift deposits, and emphasizes the significant influence of bottom currents on facies distribution and deposit architecture. The results suggest that understanding the nature of gravity- and bottom currents interaction is essential for deciphering ancient sediment gravity flow systems and their evolution.
Submarine lobes form at the distal end of sediment gravity flow systems and are globally important sinks for sediment, anthropogenic pollutants and organic carbon, as well as forming hydrocarbon and CO2 reservoirs. Deep-marine, near bed or bottom currents can modify gravity flow pathways and sediment distribution by directly interacting with the flow or by modifying seafloor morphology. Deciphering the nature of gravity- and bottom currents interaction, particularly in ancient systems, remains a challenge due to the lack of integrated datasets and the necessary oceanographic framework. Here we analyse high-resolution 3D seismic reflection and core data from the Upper Cretaceous interval offshore Tanzania to reveal the interaction of turbidite lobes with fine-grained sediment waves and contourite drift deposits. Contourite drift morphology governs the large-scale confinement style and shape of lobes that range from frontally confined and crescent shaped, to laterally confined and elongated, to semi-confined lobes. Core data reveals massive to cross-laminated high density turbidites in the lobe axis position that show no direct interaction between gravity flows and contour currents. Lobe off-axis and fringe deposits consist of parallel- and ripple-laminated, low density turbidites, which are inter-bedded with bioturbated, muddy siltstones that represent the toes of contourite drifts. Starved ripples, and streaks of up to fine-grained sandstone above individual turbidite beds indicate reworking by bottom currents. This facies distribution reflects the temporal interaction of quasi-steady bottom currents and turbidity currents that interact with the topography and build lobes over short periods of time. Frontally confined turbidity currents form lobes in a fill-and-spill fashion, in which the confinement of turbidity currents causes rapid deposition and obscures any bottom current signal. Lateral confinement causes increased turbidity current runout length, and promotes the development of lobe fringes with a high proportion of bottom current reworked sands. During times when sediment gravity flows are subordinate, contourites accumulate on top of the lobe, confining the next flow and thus modifying the overall stacking pattern of the lobe complex. Although sediment volumes of these bottom current modified lobe complexes are comparable to other deep-marine systems, bottom currents considerably influence facies distribution and deposit architecture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据