4.6 Article

Spatiotemporal Evolution and Genesis of the Late Ordovician-Early Silurian Marine Euxinia in Northeastern Upper Yangtze Basin, South China

期刊

FRONTIERS IN EARTH SCIENCE
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/feart.2021.788349

关键词

redox conditions; delta S-34(py) isotope; chemical index of alteration; upper yangtze basin; late ordovician-early silurian

资金

  1. National Nature Science Foundation of China [41772129]

向作者/读者索取更多资源

This study investigates the spatiotemporal variation and potential controlling factors of marine redox conditions in the Upper Yangtze Basin during the Late Ordovician to Early Silurian Transition, highlighting the potential control effects of sea level change, continental weathering, and upwelling on the development of euxinic water columns. The findings suggest that the development of anoxic water, especially euxinia, in the area exhibits obvious spatiotemporal heterogeneity, with different factors influencing the prevalence of ferruginous and euxinic water columns in different water depths.
Marine redox conditions and their dynamic changes were a major factor that controlled the formation of black shale and caused the late Ordovician marine extinction in the Upper Yangtze Basin (South China). However, the spatiotemporal variation and potential controlling factors of marine redox conditions in this area remain unclear. We analyzed whole-rock geochemistry and pyrite sulfur isotopes (delta S-34(py)) of 47 shale samples from the Late Katian to Rhuddanian in a shelf-to-slope (Qianjiang Shaba section and Wc-1 well) region of northeastern Upper Yangtze Basin, and reconstructed water column redox conditions during the Late Ordovician-Early Silurian Transition. The geochemical characteristics of shale, including the ratio of elements, discriminant function and ternary diagram location in the study area suggest a passive continental margin sedimentary environment, wherein the terrigenous detritus is mainly derived from felsic igneous rocks in the upper crust, showing characteristics of near-source deposition. The redox indices (Fe speciation, C-org/P, U-EF, and Mo-EF) showed that the development of anoxic water, especially euxinia, has obvious spatiotemporal heterogeneity. Under conditions of high availability of active organic carbon and limited sulfate supply, high active Fe input and strong biological irrigation in the shallow water area may effectively remove H2S produced by microbial sulfate reduction, conducive to the prevalence of ferruginous water columns. However, for this deep water area, the rapid accumulation rate of organic matter, decrease in dissolved Fe (caused by upwelling in the open sea), and seawater stratification (caused by the rising of sea level) promoted the development of a euxinic water column. This inference is supported by the covariant relationship between organic carbon accumulation rate, chemical index of alteration, Co x Mn, and delta S-34(py). Our study highlights the potential control effects of sea level change, continental weathering and upwelling on the development of euxinic water columns.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据