4.7 Article

Recent updates on ions and nutrients uptake by halotolerant freshwater and marine microalgae in conditions of high salinity

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jwpe.2021.102382

关键词

Algal growth; Salinity; Biomass; Ion uptake; Water treatment; Biosorption

资金

  1. United Arab Emirates University

向作者/读者索取更多资源

Algae is a suitable natural resource for optimizing the use of undesired ions in water and wastewater, especially in high salinity environments. Salt-tolerant algae exhibit high growth rates and significant ion removal capacities, contributing to improved water treatment efficiency.
Algae is an appropriate natural resource to augment the optimal use of undesired ions in water and wastewater. Increasing algal cells, the consumption of particular ions, including chloride, nitrate, phosphate, and ammonium, provides a suitable way to optimize water treatment processes. Different algal species have the capability to survive in extreme salinities by developing resistance against osmotic pressure in saline water. The current study reviews the effect of salinity on algal biomass production, algal growth rate, chlorides, nitrates, phosphates, chemical oxygen demand (COD), total nitrogen, total phosphorus, and ammonium ions. Mainly algae cultivated in freshwater, synthetic brackish water, seawater, and hypersaline water, were studied for this review. Various ion uptake mechanisms used by the algal cell are summarized, focusing on biosorption and bioaccumulation processes. Critical parameters such as light intensity, pH, and temperature variations significantly influence ion and nutrients uptake efficiencies. Analysis performed on collected data indicated that halophytic algae could survive in high salinities at elevated growth rates compared to freshwater. The halotolerant algal species showed an inclining trend of chloride ion removal with an elimination capacity of 7.5 g.m(-3).h(-1). Moreover, the nitrate uptake rate in halophytic algae is 10-folds higher to phosphate, regardless of salinity level. It could be concluded that microalgae will be beneficial for ion and nutrient uptake processes in treating high saline water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据