4.7 Article

A voltage dynamic-based state of charge estimation method for batteries storage systems

期刊

JOURNAL OF ENERGY STORAGE
卷 44, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2021.103309

关键词

State of charge estimation; Lithium-ion batteries; Online model

资金

  1. Research Fund for the Italian Electrical System

向作者/读者索取更多资源

The paper proposes a novel data-driven optimization methodology for battery SoC estimation, VDB-SE, which provides accurate estimations without knowing battery model parameters. Experimental results show that the method's performance is comparable to state-of-the-art algorithms under various working conditions, with a SoC estimation error of less than 2.1% on a real energy storage system.
In recent years, the use of Lithium-ion batteries in smart power systems and hybrid/electric vehicles has become increasingly popular since they provide a flexible and cost-effective way to store and deliver power. Their full integration into more complex systems requires an accurate estimate of the energy a battery is currently storing, a.k.a. State of Charge (SoC). However, the standard techniques present in the literature provide an accurate estimation of the SoC only having a priori knowledge about the battery. Moreover, their accuracy degrades if the battery working conditions (e.g., external temperature) are variable over time, or battery measurements necessary for the SoC estimation are affected by offset or gain biases. To overcome these limitations, this paper proposes a novel data-driven optimization based methodology for battery SoC estimation, namely VDB-SE. The proposed methodology provides accurate SoC estimations without knowing battery model parameters, such as capacity and internal resistance, whose characterization would require complex and long laboratory tests. Experimental verification and comparisons demonstrate that VDB-SE performance are comparable to the state-of-the-art algorithms over a wide range of working conditions. Indeed, the difference in terms of performance is smaller than 0.2%. Moreover, experimental results showed that on a real energy storage system the proposed method provides a SoC estimation with an error of less than 2.1%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据