4.7 Article

A novel model-based damage detection method for lithium-ion batteries

期刊

JOURNAL OF ENERGY STORAGE
卷 42, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2021.102970

关键词

Lithium-ion battery; Battery safety; Interactive multiple-model algorithm; Damage detection; Inconsistency

向作者/读者索取更多资源

This paper presents a damage detection method based on the IMM algorithm, which effectively detects cell damage by using two circuit models and filters to interactively estimate, providing an effective way for diagnosing cell damage.
Lithium-ion batteries are one of the critical components of electric vehicles. Different factors, such as inconsistencies in cells and cold environments, can cause overcharge, overdischarge, and high-rate cycling at low temperatures in cells, which produce various levels of damage. The failure risk of cells continues to increase as damage accumulates. Therefore, early damage detection should be carried out to prevent the cells from further failure and even thermal runaway. A damage detection method based on the interactive multiple-model (IMM) algorithm is presented in this paper. Two first-order equivalent circuit models are applied to the IMM algorithm. The model parameters are obtained from a normal cell and a damaged cell produced under abusive operating conditions. Unscented Kalman filters based on the models above are employed to estimate the state of charge interactively. The innovations and covariances of the predicted measurement are utilized to calculate mode probabilities. The mode probabilities are compared with the threshold to determine whether a cell is damaged. The results of simulations and experiments indicate that the proposed method can effectively detect specific abuses and tolerate inconsistency in cells, thus providing an effective way of diagnosing cell damage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据