4.6 Article

Microbial Community Composition during a Bloom of Purple Bacteria in Intertidal Sediments in Vigo (Northwest Spain)

期刊

MICROBIOLOGY SPECTRUM
卷 9, 期 3, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/Spectrum.01238-21

关键词

purple sulfur bacteria; microbial mat; Chromatiaceae; 16S rRNA; pigments

资金

  1. Spanish National Project DIANAS (MICINN) [CTM2017-86066-R]
  2. i-SMALL project (MCIN) [CTM2014-56119-R]
  3. GRC, Xunta de Galicia [IN607A 2019/04]
  4. CCVIEO (Spanish Oceanographic Institute)
  5. PTA-MICINN Spanish Program [PTA2016-12825-I]

向作者/读者索取更多资源

The study revealed that a large, bright pink microbial mat on an urban beach in Vigo was dominated by Proteobacteria, with purple sulfur bacteria as the main contributors to the colored mats. These blooms, common in summertime, raised concerns among beachgoers and media in 2019. The diversity and presence of novel taxa of purple sulfur bacteria illustrate the complexity of these ecosystems beyond public health risks.
In summer 2019, a large, bright pink microbial mat was visible on top of macroalgal deposits in muddy sediments of an urban beach (Playa do Adro, Vigo). In order to characterize the dominant organisms in these colored mats, results from microscopic observations, photosynthetic pigments, and molecular analysis were gathered. Light microscopy examination revealed pinkish microbial aggregates with minor contributions of larger protists and cyanobacteria. High-performance liquid chromatography (HPLC) pigment analysis documented the dominance of bacteriochlorophyll a and carotenoids whose spectra were compatible with those described in photosynthetic purple bacteria. 16S rRNA gene amplicon sequencing confirmed that the vast majority of reads belonged to Proteobacteria (73.5%), and among them, nearly 88% of those reads belonged to purple sulfur bacteria (Gammaproteobacteria). A single family, Chromatiaceae, constituted the bulk of this assemblage, including the genera Thiohalocapsa (32%), Marichromatium (12.5%), Phaeochromatium (5%), and Halocromatium (2%) as main contributors. Nonetheless, a considerable number of sequences could not be assigned to a particular genus, stressing the large biological diversity in these microbial mats and the potential presence of novel taxa of purple sulfur bacteria. IMPORTANCE Urban beaches are valuable recreational areas particularly vulnerable to human disturbance. In these areas, the intertidal sediments harbor a diverse community of microorganisms, including virus, bacteria, fungi, and protozoa. In this sense, pollution events can introduce pathogenic allochthonous microbes which may constitute a human health risk. Visual and sensory observations, such as a weird color or bad smell, are usually appreciated as a warning by beachgoers and authorities, as indeed was the case at do Adro beach in 2019. The observed proliferation seems to be common in summertime, but its dimension alerted beachgoers and media. The obtained results allowed for the identification of purple sulfur bacteria as responsible for the pink-violet top layer staining the intertidal zone. These blooms have never been associated with public health risks. Beyond solving the sanitary concern, other important findings were its diversity and large proportion of novel taxa, illustrating the complexity of these ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据