4.7 Article

Metabolic and Transcriptional Adaptations Improve Physical Performance of Zebrafish

期刊

ANTIOXIDANTS
卷 10, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/antiox10101581

关键词

danio rerio; diabetes; physical activity; blood glucose; metabolomics; transcriptional profile

资金

  1. Deutsche Forschungsgemeinschaft [CRC1118, IRTG 1874/2 DIAMICOM]
  2. Rolf M. Schwiete Stiftung

向作者/读者索取更多资源

Obesity is a global public health issue that affects 80% of type 2 diabetes cases. Zebrafish is a common model organism for studying obesity and diabetes, with swim training being a valuable tool to study physical activity effects. Training increased zebrafish maximum speed and had metabolic and transcriptional impacts, but was not effective in preventing weight gain in overfed fish.
Obesity is a worldwide public health problem with increasing prevalence and affects 80% of diabetes mellitus type 2 cases. Zebrafish (Danio rerio) is an established model organism for studying obesity and diabetes including diabetic microvascular complications. We aimed to determine whether physical activity is an appropriate tool to examine training effects in zebrafish and to analyse metabolic and transcriptional processes in trained zebrafish. A 2- and 8-week experimental training phase protocol with adult zebrafish in a swim tunnel system was established. We examined zebrafish basic characteristics before and after training such as body weight, body length and maximum speed and considered overfeeding as an additional parameter in the 8-weeks training protocol. Ultimately, the effects of training and overfeeding on blood glucose, muscle core metabolism and liver gene expression using RNA-Seq were investigated. Zebrafish maximum speed was correlated with body length and was significantly increased after 2 weeks of training. Maximum swim speed further increased after 8 weeks of training in both the normal-fed and the overfed groups, but training was found not to be sufficient in preventing weight gain in overfed fish. Metabolome and transcriptome profiling in trained fish exhibited increased blood glucose levels in the short-term and upregulated energy supply pathways as well as response to oxidative stress in the long-term. In conclusion, swim training is a valuable tool to study the effects of physical activity in zebrafish, which is accompanied by metabolic and transcriptional adaptations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据