4.7 Article

Phenylpropanoid Glycoside and Phenolic Acid Profiles and Biological Activities of Biomass Extracts from Different Types of Verbena officinalis Microshoot Cultures and Soil-Grown Plant

期刊

ANTIOXIDANTS
卷 11, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/antiox11020409

关键词

vervain; in vitro cultures; phenylpropanoid glycosides; phenolic acids; antioxidant activity; antibacterial properties

资金

  1. King Saud University, Riyadh, Saudi Arabia [RSP-2021/118]

向作者/读者索取更多资源

This study optimized different types of microshoot cultures of Verbena officinalis for biomass growth and the production of phenylpropanoid glycosides and phenolic acids. The extracts showed strong antioxidant and antibacterial activities, with the type of culture having an impact on the activity.
Different types of microshoot cultures (agar, stationary liquid, agitated, and bioreactors) of Verbena officinalis were optimized for biomass growth and the production of phenylpropanoid glycosides and phenolic acids. Using ultra-high performance liquid chromatography with high-resolution time-of-flight mass spectrometry, the presence of verbascoside, isoverbascoside, leucoseptoside A/isomers, and cistanoside D/isomer was confirmed in the methanolic extracts obtained from all types of in vitro cultures. The compound's content was determined by ultra-high-performance liquid chromatography. The main metabolites in biomass extracts were verbascoside and isoverbascoside (maximum 4881.61 and 451.80 mg/100 g dry weight (DW)). In the soil-grown plant extract, verbascoside was also dominated (1728.97 mg/100 g DW). The content of phenolic acids in the analyzed extracts was below 24 mg/100 g DW. The highest radical scavenging activity was found in the biomass extract from agitated cultures, the most effective reducing power in agar culture extract, and the highest chelating activity in extract from bioreactor cultures. The extracts showed significantly stronger bacteriostatic and bactericidal activity against Gram-positive bacteria (minimum inhibitory concentration (MIC) of 0.3-2.2 mg/mL and minimum bactericidal concentration (MBC) of 0.6-9 mg/mL) than against Gram-negative bacteria (MIC 0.6-9 mg/mL, MBC of 0.6-18 mg/mL). The biomass extract from liquid stationary culture showed the strongest antibacterial activity, while the extract from soil-grown herb had the lowest.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据