4.7 Article

NBD2 Is Required for the Rescue of Mutant F508del CFTR by a Thiazole-Based Molecule: A Class II Corrector for the Multi-Drug Therapy of Cystic Fibrosis

期刊

BIOMOLECULES
卷 11, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/biom11101417

关键词

cystic fibrosis transmembrane conductance regulator (CFTR); cystic fibrosis; F508del CFTR; CFTR correctors; CFTR domains; aminoarylthiazoles

资金

  1. Italian Cystic Fibrosis Research Foundation [3/2018]
  2. Regione Liguria

向作者/读者索取更多资源

Cystic fibrosis is caused by loss-of-function mutations in the CFTR protein, with F508del being the most common mutation. Small molecules called correctors have been developed to rescue defective F508del CFTR, showing better results when used in combinations. Targeting different structural and functional defects of mutant CFTR with corrector combinations appears to be the most promising therapeutic approach for a larger cohort of CF patients.
Cystic fibrosis (CF) is caused by loss-of-function mutations in the CF transmembrane conductance regulator (CFTR) protein, an anion channel that regulates epithelial surface fluid secretion. The deletion of phenylalanine at position 508 (F508del) is the most common CFTR mutation. F508del CFTR is characterized by folding and trafficking defects, resulting in decreased functional expression of the protein on the plasma membrane. Several classes of small molecules, named correctors, have been developed to rescue defective F508del CFTR. Although individual correctors failed to improve the clinical status of CF patients carrying the F508del mutation, better results were obtained using correctors combinations. These results were obtained according to the premise that the administration of correctors having different sites of action should enhance F508del CFTR rescue. We investigated the putative site of action of an aminoarylthiazole 4-(3-chlorophenyl)-N-(3-(methylthio)phenyl)thiazol-2-amine, named FCG, with proven CFTR corrector activity, and its synergistic effect with the corrector VX809. We found that neither the total expression nor the maturation of WT CFTR transiently expressed in human embryonic kidney 293 cells was influenced by FCG, administrated alone or in combination with VX809. On the contrary, FCG was able to enhance F508del CFTR total expression, and its combination with VX809 provided a further effect, being able to increase not only the total expression but also the maturation of the mutant protein. Analyses on different CFTR domains and groups of domains, heterologously expressed in HEK293 cells, show that NBD2 is necessary for FCG corrector activity. Molecular modelling analyses suggest that FCG interacts with a putative region located into the NBD2, ascribing this molecule to class II correctors. Our study indicates that the continuous development and testing of combinations of correctors targeting different structural and functional defects of mutant CFTR is the best strategy to ensure a valuable therapeutic perspective to a larger cohort of CF patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据