4.7 Article

Surfactant Protein-G in Wildtype and 3xTg-AD Mice: Localization in the Forebrain, Age-Dependent Hippocampal Dot-like Deposits and Brain Content

期刊

BIOMOLECULES
卷 12, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/biom12010096

关键词

Alzheimer's disease; SP-G; SFTA2; hippocampus; habenula; Reelin; 3xTg mouse; beta-amyloid; hyperphosphorylated tau

资金

  1. Leipzig University

向作者/读者索取更多资源

The classic surfactant proteins have important roles in the lungs and brain. A novel surfactant protein, SP-G, is linked to inflammation in the lungs and is also present in the brain, particularly elevated after hemorrhage in premature infants and in conditions affecting cerebrospinal fluid. This study suggests that SP-G might play a role in the pathophysiology of Alzheimer's disease.
The classic surfactant proteins (SPs) A, B, C, and D were discovered in the lungs, where they contribute to host defense and regulate the alveolar surface tension during breathing. Their additional importance for brain physiology was discovered decades later. SP-G, a novel amphiphilic SP, was then identified in the lungs and is mostly linked to inflammation. In the brain, it is also present and significantly elevated after hemorrhage in premature infants and in distinct conditions affecting the cerebrospinal fluid circulation of adults. However, current knowledge on SP-G-expression is limited to ependymal cells and some neurons in the subventricular and superficial cortex. Therefore, we primarily focused on the distribution of SP-G-immunoreactivity (ir) and its spatial relationships with components of the neurovascular unit in murine forebrains. Triple fluorescence labeling elucidated SP-G-co-expressing neurons in the habenula, infundibulum, and hypothalamus. Exploring whether SP-G might play a role in Alzheimer's disease (AD), 3xTg-AD mice were investigated and displayed age-dependent hippocampal deposits of beta-amyloid and hyperphosphorylated tau separately from clustered, SP-G-containing dots with additional Reelin-ir-which was used as established marker for disease progression in this specific context. Semi-quantification of those dots, together with immunoassay-based quantification of intra- and extracellular SP-G, revealed a significant elevation in old 3xTg mice when compared to age-matched wildtype animals. This suggests a role of SP-G for the pathophysiology of AD, but a confirmation with human samples is required.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据