4.7 Article

Effect of Freezing Process on the Microstructure of Gelatin Methacryloyl Hydrogels

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fbioe.2021.810155

关键词

GelMA; freezing temperature; freezing time; morphology; cell proliferation

资金

  1. Natural Science Foundation of Liaoning Province of China [2020-MS-166]
  2. Foundation of the Education Department of Liaoning Province in China [QN2019035]
  3. National Natural Science Foundation of China [81500897]

向作者/读者索取更多资源

This study investigated the effects of freezing conditions on GelMA hydrogels, finding that lower freezing temperatures and longer freezing times led to smaller pore sizes and enhanced cell viability and proliferation. The tunable microstructure of GelMA hydrogels can be achieved by regulating freezing conditions, offering promising prospects for tissue engineering applications.
Gelatin methacryloyl (GelMA) hydrogels have aroused considerable interests in the field of tissue engineering due to tunable physical properties and cell response parameters. A number of works have studied the impact of GelMA concentration, photo-initiator concentration, methacrylic anhydride (MA) concentration, cooling rate and temperature gradient on GelMA hydrogel generation, but little attention has been paid to the effect of the freezing temperatures and freezing time of GelMA prepolymer solution during preparation. In this study, GelMA hydrogels were synthesized with different freezing temperatures and time. It was found that the lower freezing temperatures and longer freezing time caused smaller pore sizes that realized higher cell viability and proliferation of MC3T3-E1 cells. The results showed that tunable microstructure of GelMA could be achieved by regulating the freezing conditions of GelMA, which provided a broad prospect for the applications of GelMA hydrogels in tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据