4.5 Article

Ultra-Thin Chiral Metasurface-Based Superoscillatory Lens

期刊

FRONTIERS IN MATERIALS
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmats.2021.806725

关键词

metasurface; chirality; ultra-thin; polarization conversion; transmission; high efficiency; microwave; optical superoscillation

资金

  1. National Natural Science Foundation of China [62171165, 61771172]
  2. Open Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing
  3. Natural Science Foundation of Heilongjiang Province [YQ2020F002]

向作者/读者索取更多资源

This paper proposes an ultra-thin metasurface-based superoscillatory lens that can generate a sub-diffraction optical needle with a long focal depth. The lens has the advantages of simple fabrication, high efficiency, and low-profile design.
The metasurface-based superoscillatory lens has been demonstrated to be effective in finely tailoring the wavefront of light to generate focal spots beyond the diffraction limit in the far-field that is capable of improving the resolution of the imaging system. In this paper, an ultra-thin (0.055 lambda(0)) metasurface-based superoscillatory lens (SOL) that can generate a sub-diffraction optical needle with a long focal depth is proposed, which is constructed by ultra-thin chiral unit cells containing two metal split-ring resonators (SRR) with a 90 degrees twisted angle difference cladded on both sides of a 1.5 mm-thick dielectric substrate, with a high linear cross-polarized transmission coefficient around 0.9 and full phase control capability at 11 GHz. Full-wave simulation shows that SOL generates a sub-diffraction optical needle within 10.5-11.5 GHz. At the center frequency, the focal depth is 281 mm (10.3 lambda(0)) within 105-386 mm, the full width at half maximum (FWHM) is 18.5 mm (0.68 lambda(0)), about 0.7 times the diffraction limit, generally consistent with the theoretical result. The proposed ultra-thin chiral metasurface-based SOL holds great potential in integrating into practical imaging applications for its simple fabrication, high efficiency, and low-profile advantages.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据