4.7 Article

The Impact of Drought Stress on Soil Microbial Community, Enzyme Activities and Plants

期刊

AGRONOMY-BASEL
卷 12, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/agronomy12010189

关键词

climate change; water scarcity; soil microbiome; microbial activity; plant growth and development

向作者/读者索取更多资源

Drought stress is a significant consequence of climate change, affecting soil microorganisms and plant growth and development. It decreases microbial abundance, activity, and soil fertility, leading to reduced plant productivity. However, the negative effects can be mitigated by adding organic substances and by the adaptability of rhizosphere microbial communities. Studying the impacts of drought on soil microbial communities and plant growth is important for agricultural management under harsh conditions.
Nowadays, the most significant consequence of climate change is drought stress. Drought is one of the important, alarming, and hazardous abiotic stresses responsible for the alterations in soil environment affecting soil organisms, including microorganisms and plants. It alters the activity and functional composition of soil microorganisms that are responsible for crucial ecosystem functions and services. These stress conditions decrease microbial abundance, disturb microbial structure, decline microbial activity, including enzyme production (e.g., such as oxidoreductases, hydrolases, dehydrogenase, catalase, urease, phosphatases, beta-glucosidase) and nutrient cycling, leading to a decrease in soil fertility followed by lower plant productivity and loss in economy. Interestingly, the negative effects of drought on soil can be minimized by adding organic substances such as compost, sewage slugs, or municipal solid waste that increases the activity of soil enzymes. Drought directly affects plant morphology, anatomy, physiology, and biochemistry. Its effect on plants can also be observed by changes at the transcriptomic and metabolomic levels. However, in plants, it can be mitigated by rhizosphere microbial communities, especially by plant growth-promoting bacteria (PGPB) and fungi (PGPF) that adapt their structural and functional compositions to water scarcity. This review was undertaken to discuss the impacts of drought stress on soil microbial community abundance, structure and activity, and plant growth and development, including the role of soil microorganisms in this process. Microbial activity in the soil environment was considered in terms of soil enzyme activities, pools, fluxes, and processes of terrestrial carbon (C) and nitrogen (N) cycles. A deep understanding of many aspects is necessary to explore the impacts of these extreme climate change events. We also focus on addressing the possible ways such as genome editing, molecular analysis (metagenomics, transcriptomics, and metabolomics) towards finding better solutions for mitigating drought effects and managing agricultural practices under harsh condition in a profitable manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据