4.7 Article

The Use of Ecological Hydromulching Improves Growth in Escarole (Cichorium endivia L.) Plants Subjected to Drought Stress by Fine-Tuning Cytokinins and Abscisic Acid Balance

期刊

AGRONOMY-BASEL
卷 12, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/agronomy12020459

关键词

escarole; hydromulching; drought stress; hormonal balance; cytokinins; abscisic acid

资金

  1. European Social Fund [FPI-BES-2017-082758]

向作者/读者索取更多资源

Drought is a major limiting factor for plant growth, but the use of hydromulching can improve plant growth and mitigate the negative effects of drought through hormonal regulation.
Drought is considered as one of the major limiting factors to plant growth and productivity. Drought stress reduces stomatal conductance, affecting water relations and decreasing CO2 assimilation rate and photosynthesis. Several strategies have been developed to alleviate the negative effects of drought in the agricultural industry. One of these strategies is the use of the mulching technology, which retains water in the soil surface. Knowing that hormones play a key role in plant growth and drought stress responses, we hypothesized that the use of a new ecological mulching technology called hydromulching would improve growth over bare soil under drought stress through changes in the hormonal balance. To test this hypothesis, escarole plants (Cichorium endivia L.) were grown in pots filled with coco fiber, non-covered (bare soil) or covered with polyethylene film (PE) and three types of hydromulches made up with recycled additives: wheat straw (WS), rice hulls (RH), and substrate used for mushroom cultivation (MS). Half of the plants were subjected to drought by reducing the volume of irrigation water to 70% of crop evapotranspiration. Despite drought stress impaired escarole growth-related parameters in all treatments, plants mulched with MS maintained significantly superior growth, due to improved plant water relations and photosynthetic function. This can be explained by an efficient interaction hydromulch/soil/plant in regulating the hormonal balance under water depletion. Indeed, the concentrations of the active cytokinins (CKs), trans-zeatin and isopentenyladenine, were higher in plants grown with MS treatment, associated with shoot growth-enhancing and photosynthetic rate maintenance under stress conditions. The concentrations of the stress-related hormone, abscisic acid (ABA), varied antagonistically to those of the active CKs. In this regard, ABA increased with drought but to a lower extent in MS plants thus regulating stomata opening, which, in crosstalk with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid and salicylic acid, improved plant water relations. The results obtained demonstrate that hydromulching is an efficient and sustainable management strategy to ameliorate the drought effects on escarole plants through fine regulation of the CKs/ABA balance, which will be of utmost interest and applicability in the actual climate change scenario.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据