4.7 Article

Optimizing near Infrared Reflectance Spectroscopy to Predict Nutritional Quality of Chickpea Straw for Livestock Feeding

期刊

ANIMALS
卷 11, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/ani11123409

关键词

calibration; validation; prediction error; nutritional quality; crop residue; NIRS

资金

  1. CGIAR Collaborative Research Program (CRP)

向作者/读者索取更多资源

The study demonstrated that near infrared reflectance spectroscopy (NIRS) accurately predicted the nutritive value of chickpea straw, providing a valuable tool for screening genotypes in chickpea improvement programs.
Simple Summary The potential of near infrared reflectance spectroscopy (NIRS) to predict the nutritive value of chickpea straw was identified. Spectral data of 480 samples of chickpea straw (40 genotypes) were scanned with a spectral range of 1108 to 2492 nm. The samples were reduced to 190 representative samples based on the spectral data then divided into a calibration set (160 samples) and a cross-validation set (30 samples). All 190 samples were analysed for dry matter, ash, crude protein, neutral detergent fibre, acid detergent fibre, acid detergent lignin, Zn, Mn, Ca, Mg, Fe, P, and in vitro gas production metabolizable energy using conventional methods. The prediction equations were generated by multiple regression analysis. The NIRS prediction equations in the study accurately predicted the nutritive value of chickpea straw (R-2 of cross validation > 0.68; standard error of prediction < 1%). Chickpea straw nutritive value could be predicted using NIRS. Multidimensional improvement programs of chickpea require screening of a large number of genotypes for straw nutritive value. The ability of near infrared reflectance spectroscopy (NIRS) to determine the nutritive value of chickpea straw was identified in the current study. A total of 480 samples of chickpea straw representing a nation-wide range of environments and genotypic diversity (40 genotypes) were scanned at a spectral range of 1108 to 2492 nm. The samples were reduced to 190 representative samples based on the spectral data then divided into a calibration set (160 samples) and a cross-validation set (30 samples). All 190 samples were analysed for dry matter, ash, crude protein, neutral detergent fibre, acid detergent fibre, acid detergent lignin, Zn, Mn, Ca, Mg, Fe, P, and in vitro gas production metabolizable energy using conventional methods. Multiple regression analysis was used to build the prediction equations. The prediction equation generated by the study accurately predicted the nutritive value of chickpea straw (R-2 of cross validation > 0.68; standard error of prediction < 1%). Breeding programs targeting improving food-feed traits of chickpea could use NIRS as a fast, cheap, and reliable tool to screen genotypes for straw nutritional quality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据