4.7 Article

Determination of the Nutritional Value of Diet Containing Bacillus subtilis Hydrolyzed Feather Meal in Adult Dogs

期刊

ANIMALS
卷 11, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/ani11123553

关键词

feather processing; total tract digestibility; hydrolyzed protein; poultry byproduct

向作者/读者索取更多资源

This study explored the feather-degrading activity of Bacillus subtilis and found some methods to improve the digestibility of feathers, but there are still limitations in digesting feathers on a large scale.
Simple Summary The production of meat for human consumption produces extra ingredients used in animal nutrition. Feathers, for example, account for about 7% of the chicken's body weight. When discarded, it presents a potential risk of environmental contamination. Feathers are minimally digested in mammals and are a very rich source of protein. Improved digestibility can be done by thermal processing or by microorganisms. Bacillus subtilis was shown to have great feather-degrading activity In vitro and we produced an amount of microbial hydrolysate to test in dogs. We did some evaluations on the ingredient to measure the effects of the microorganism on feathers. In dogs, a test of total tract digestibility, microbial resistance to the gastrointestinal tract, and fecal characteristics were performed. Bacillus subtilis was less efficient to digest feathers when a higher concentration of feathers was added to the culture. The amino acid profile in feathers has probably changed due to fermentation. Dogs ate the diets quickly, with no refusals. Nutrient and energy total tract digestibility were lower when compared to thermally processed feathers, but Bacillus subtilis was found viable in the feces of dogs that ingested fermented feathers, signaling that Bacillus subtilis is resistant to digestion and may bring some probiotic effect. Feathers are naturally made up of non-digestible proteins. Under thermal processing, total tract digestibility can be partially improved. Furthermore, Bacillus subtilis (Bs) has shown a hydrolytic effect In vitro. Then, a Bs FTC01 was selected to hydrolyze enough feathers to produce a meal, and then test the quality and inclusion in the dog's diet to measure the apparent total tract digestibility coefficient (ATTDC) in vivo and the microorganism's ability to survive in the gastrointestinal tract. A basal diet was added with 9.09% hydrolyzed Bs feather meal (HFMBs) or 9.09% thermally hydrolyzed feather meal (HFMT). Nine adult dogs were randomized into two 10-day blocks and fed different diets. Microbial counts were performed on feather meal, diets and feces. The Bs was less effective in digesting the feathers, which reduced the ATTDC of dry matter, crude protein, energy and increased the production of fecal DM, but the fecal score was maintained (p > 0.05). The digestible energy of HFMT and HFMBs was 18,590 J/kg and 9196 J/kg, respectively. Bacillus subtilis showed limitation to digest feather in large scale, but the resistance of Bs to digestion was observed since it grown on feces culture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据