4.7 Article

Application of Next Generation Semiconductor-Based Sequencing for the Identification of Apis mellifera Complementary Sex Determiner (csd) Alleles from Honey DNA

期刊

INSECTS
卷 12, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/insects12100868

关键词

environmental DNA; genetic diversity; honey bee; inbreeding; polymorphism; population genomics; variability

资金

  1. University of Bologna 2020 RFO program
  2. Regione Emilia-Romagna, BEE-RER-2 project [CUP E39J21000260007, 1308/2013]

向作者/读者索取更多资源

This study utilized honey environmental DNA as a source of honey bee DNA and next generation sequencing technology to analyze the variability of a key gene of Apis mellifera L., the complementary sex determiner (csd) gene. The research showed the importance of maintaining a large csd diversity in honey bee populations to monitor the allele variability and provided a new strategy to disclose the genetic diversity at the csd gene at the population-wide level.
Simple Summary: Honey contains traces of the DNA of the honey bees that produced it. This environmental DNA can therefore be used to investigate the genome of the honey bees. In this study, we used a next generation sequencing technology to analyze the variability of a key gene of Apis mellifera L., the complementary sex determiner (csd) gene, using honey environmental DNA as a source of honey bee DNA. This gene determines the sex of the bees. Two different alleles at this locus are needed to produce females whereas males have only one copy of this gene as they are haploid. In case two identical alleles are present in a diploid individual, the larvae are not vital and are discarded by the workers. Therefore, there is an advantage in maintaining a large csd diversity in honey bee populations. In light of the recent decline in honey bee populations, it is important to monitor the allele variability at this gene. The applied methodology provided a new strategy to disclose the genetic diversity at the csd gene at the population-wide level and identify most, if not all, csd alleles present in the colonies in a single analysis. The complementary sex determiner (csd) gene plays an essential role in the sex determination of Apis mellifera L. Females develop only if fertilized eggs have functional heterozygous genotypes at this gene whereas males, being haploids, are hemizygous. Two identical csd alleles produce non vital males. In light of the recent decline in honey bee populations, it is therefore important to monitor the allele variability at this gene. In this study, we tested the application of next generation semiconductor-based sequencing technology (Ion Torrent) coupled with environmental honey DNA as a source of honey bee genome information to retrieve massive sequencing data for the analysis of variability at the hypervariable region (HVR) of the csd gene. DNA was extracted from 12 honey samples collected from honeycombs directly retrieved from 12 different colonies. A specifically designed bioinformatic pipeline, applied to analyze a total of about 1.5 million reads, identified a total of 160 different csd alleles, 55% of which were novel. The average number of alleles per sample was compatible with the number of expected patrilines per colony, according to the mating behavior of the queens. Allele diversity at the csd could also provide information useful to reconstruct the history of the honey.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据