4.7 Article

Climate Change Increases the Expansion Risk of Helicoverpa zea in China According to Potential Geographical Distribution Estimation

期刊

INSECTS
卷 13, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/insects13010079

关键词

Helicoverpa zea; climate change; suitable habitat; MaxEnt model; calibration

资金

  1. National Key R&D Program of China [2021YFC2600400]
  2. PRC-GEF Partnership Program for Sustainable Agricultural Development [R-IAST2021-04]
  3. Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences [caascx-2017-2022-IAS]
  4. Government Procurement of Services Program of Ministry of Agriculture and Rural Affairs of the People's Republic of China [13210387]

向作者/读者索取更多资源

This study predicts the potential geographical distributions of Helicoverpa zea in China using a calibrated MaxEnt model and finds that China is an important distribution area for the pest under current climate conditions. Future climate changes will facilitate its expansion in the country. Customs ports need to strengthen monitoring and quarantine measures for host plants and containers harboring this pest.
Simple Summary Helicoverpa zea is one of the most destructive lepidopteran agricultural pests in the world and can disperse long distances both with and without human transportation. It is listed in the catalog of quarantine pests for plants imported to the People's Republic of China but has not yet been reported in China. On the basis of 1781 global distribution records of H. zea and eight bioclimatic variables, we predicted the potential geographical distributions (PGDs) of H. zea by using a calibrated MaxEnt model. The results showed that the PGDs of H. zea under the current climate are large in China. Future climate changes under shared socioeconomic pathways (SSP) 1-2.6, SSP2-4.5, and SSP5-8.5 for both the 2030s and 2050s will facilitate the expansion of PGDs for H. zea. Helicoverpa zea has a high capacity for colonization by introduced individuals in China. Customs ports should pay attention to the host plants of H. zea and containers harboring this pest. Helicoverpa zea, a well-documented and endemic pest throughout most of the Americas, affecting more than 100 species of host plants. It is a quarantine pest according to the Asia and Pacific Plant Protection Commission (APPPC) and the catalog of quarantine pests for plants imported to the People's Republic of China. Based on 1781 global distribution records of H. zea and eight bioclimatic variables, the potential geographical distributions (PGDs) of H. zea were predicted by using a calibrated MaxEnt model. The contribution rate of bioclimatic variables and the jackknife method were integrated to assess the significant variables governing the PGDs. The response curves of bioclimatic variables were quantitatively determined to predict the PGDs of H. zea under climate change. The results showed that: (1) four out of the eight variables contributed the most to the model performance, namely, mean diurnal range (bio2), precipitation seasonality (bio15), precipitation of the driest quarter (bio17) and precipitation of the warmest quarter (bio18); (2) PGDs of H. zea under the current climate covered 418.15 x 10(4) km(2), and were large in China; and (3) future climate change will facilitate the expansion of PGDs for H. zea under shared socioeconomic pathways (SSP) 1-2.6, SSP2-4.5, and SSP5-8.5 in both the 2030s and 2050s. The conversion of unsuitable to low suitability habitat and moderately to high suitability habitat increased by 8.43% and 2.35%, respectively. From the present day to the 2030s, under SSP1-2.6, SSP2-4.5 and SSP5-8.5, the centroid of the suitable habitats of H. zea showed a general tendency to move eastward; from 2030s to the 2050s, under SSP1-2.6 and SSP5-8.5, it moved southward, and it moved slightly northward under SSP2-4.5. According to bioclimatic conditions, H. zea has a high capacity for colonization by introduced individuals in China. Customs ports should pay attention to host plants and containers of H. zea and should exchange information to strengthen plant quarantine and pest monitoring, thus enhancing target management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据