4.5 Article

Fully automated guideline-compliant diameter measurements of the thoracic aorta on ECG-gated CT angiography using deep learning

期刊

QUANTITATIVE IMAGING IN MEDICINE AND SURGERY
卷 11, 期 10, 页码 4245-4257

出版社

AME PUBL CO
DOI: 10.21037/qims-21-142

关键词

Deep learning; aortic aneurysm; computed tomography angiography; dimensional measurement accuracy; observer variation; time management

向作者/读者索取更多资源

The research found that in a clinical setting, the DL algorithm provided coherent results to radiologists at almost 90% of measurement locations, with the majority of discrepent cases located at the aortic root. In total, the DL algorithm assisted radiologists in performing AHA-compliant measurements by saving 50% of time per case.
Background: Manually performed diameter measurements on ECG-gated CT-angiography (CTA) represent the gold standard for diagnosis of thoracic aortic dilatation. However, they are time-consuming and show high inter-reader variability. Therefore, we aimed to evaluate the accuracy of measurements of a deep learning-(DL)-algorithm in comparison to those of radiologists and evaluated measurement times (MT). Methods: We retrospectively analyzed 405 ECG-gated CTA exams of 371 consecutive patients with suspected aortic dilatation between May 2010 and June 2019. The DL-algorithm prototype detected aortic landmarks (deep reinforcement learning) and segmented the lumen of the thoracic aorta (multi-layer convolutional neural network). It performed measurements according to AHA-guidelines and created visual outputs. Manual measurements were performed by radiologists using centerline technique. Human performance variability (HPV), MT and DL-performance were analyzed in a research setting using a linear mixed model based on 21 randomly selected, repeatedly measured cases. DL-algorithm results were then evaluated in a clinical setting using matched differences. If the differences were within 5 mm for all locations, the cases was regarded as coherent; if there was a discrepancy >5 mm at least at one location (incl. missing values), the case was completely reviewed. Results: HPV ranged up to +/- 3.4 mm in repeated measurements under research conditions. In the clinical setting, 2,778/3,192 (87.0%) of DL-algorithm's measurements were coherent. Mean differences of paired measurements between DL-algorithm and radiologists at aortic sinus and ascending aorta were -0.45 +/- 5.52 and -0.02 +/- 3.36 mm. Detailed analysis revealed that measurements at the aortic root were over-/underestimated due to a tilted measurement plane. In total, calculated time saved by DL-algorithm was 3:10 minutes/case. Conclusions: The DL-algorithm provided coherent results to radiologists at almost 90% of measurement locations, while the majority of discrepent cases were located at the aortic root. In summary, the DL-algorithm assisted radiologists in performing AHA-compliant measurements by saving 50% of time per case.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据