4.7 Article

Electrospun Amphiphilic Nanofibers as Templates for In Situ Preparation of Chloramphenicol-Loaded Liposomes

期刊

PHARMACEUTICS
卷 13, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/pharmaceutics13111742

关键词

liposome; electrospinning; amphiphilic nanofibers; film hydration; drug release; chloramphenicol

资金

  1. NordForsk
  2. PRG726 project
  3. EEA/Norway Grants Scholarship Programme [36-3.1/1601]
  4. Estonian Ministry of Education and Research
  5. Estonian Research Council
  6. Doctoral School of Clinical Medicine

向作者/读者索取更多资源

The study compared the preparation of drug-loaded liposomes using two methods and found that liposomes prepared by electrospinning were smaller and more homogeneous but contained less drug. Additionally, the electrospinning method was faster for in-situ liposome preparation.
The hydration of phospholipids, electrospun into polymeric nanofibers and used as templates for liposome formation, offers pharmaceutical advantages as it avoids the storage of liposomes as aqueous dispersions. The objective of the present study was to electrospin and characterize amphiphilic nanofibers as templates for the preparation of antibiotic-loaded liposomes and compare this method with the conventional film-hydration method followed by extrusion. The comparison was based on particle size, encapsulation efficiency and drug-release behavior. Chloramphenicol (CAM) was used at different concentrations as a model antibacterial drug. Phosphatidylcoline (PC) with polyvinylpyrrolidone (PVP), using ethanol as a solvent, was found to be successful in fabricating the amphiphilic composite drug-loaded nanofibers as well as liposomes with both methods. The characterization of the nanofiber templates revealed that fiber diameter did not affect the liposome size. According to the optical microscopy results, the immediate hydration of phospholipids deposited on the amphiphilic nanofibers occurred within a few seconds, resulting in the formation of liposomes in water dispersions. The liposomes appeared to aggregate more readily in the concentrated than in the diluted solutions. The drug encapsulation efficiency for the fiber-hydrated liposomes varied between 14.9 and 28.1% and, for film-hydrated liposomes, between 22.0 and 77.1%, depending on the CAM concentrations and additional extrusion steps. The nanofiber hydration method was faster, as less steps were required for the in-situ liposome preparation than in the film-hydration method. The liposomes obtained using nanofiber hydration were smaller and more homogeneous than the conventional liposomes, but less drug was encapsulated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据