4.7 Article

A 3D-Printed Polymer-Lipid-Hybrid Tablet towards the Development of Bespoke SMEDDS Formulations

期刊

PHARMACEUTICS
卷 13, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/pharmaceutics13122107

关键词

lipid; SMEDDS; additive manufacturing; controlled release

向作者/读者索取更多资源

This study advances the field of 3D-printed solid lipid formulations by introducing a 3D-printed dissolvable polymer scaffold to compartmentalize different drugs in different lipid formulations within a single dosage form. The dispersion and drug release are predictably dependent on the exposed surface area-to-volume ratio (SA:V) and independent of the drug, offering opportunities for developing new dose forms with advantages in a polypharmacy context.
3D printing is a rapidly growing area of interest within pharmaceutical science thanks to its versatility in creating different dose form geometries and drug doses to enable the personalisation of medicines. Research in this area has been dominated by polymer-based materials; however, for poorly water-soluble lipophilic drugs, lipid formulations present advantages in improving bioavailability. This study progresses the area of 3D-printed solid lipid formulations by providing a 3D-printed dissolvable polymer scaffold to compartmentalise solid lipid formulations within a single dosage form. This allows the versatility of different drugs in different lipid formulations, loaded into different compartments to generate wide versatility in drug release, and specific control over release geometry to tune release rates. Application to a range of drug molecules was demonstrated by incorporating the model lipophilic drugs; halofantrine, lumefantrine and clofazimine into the multicompartmental scaffolded tablets. Fenofibrate was used as the model drug in the single compartment scaffolded tablets for comparison with previous studies. The formulation-laden scaffolds were characterised using X-ray CT and dispersion of the formulation was studied using nephelometry, while release of a range of poorly water-soluble drugs into different gastrointestinal media was studied using HPLC. The studies show that dispersion and drug release are predictably dependent on the exposed surface area-to-volume ratio (SA:V) and independent of the drug. At the extremes of SA:V studied here, within 20 min of dissolution time, formulations with an SA:V of 0.8 had dispersed to between 90 and 110%, and completely released the drug, where as an SA:V of 0 yielded 0% dispersion and drug release. Therefore, this study presents opportunities to develop new dose forms with advantages in a polypharmacy context.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据