4.6 Article

Biological Effects of Monoenergetic Carbon Ions and Their Associated Secondary Particles

期刊

FRONTIERS IN ONCOLOGY
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fonc.2022.788293

关键词

DNA damage; carbon ion radiotherapy; Bragg peak; gamma-H2AX; secondary particles

类别

向作者/读者索取更多资源

DNA double-strand breaks (DSBs) are the main cause of cell death in carbon-ion radiation therapy (CIRT). Nuclear interactions between primary carbon ions and targets lead to nuclear fragmentation and the production of secondary particles. These particles travel to the tail region, causing unwanted biological effects. The density of DSBs within high-LET track structures plays a crucial role in inducing cell death.
DNA double-strand breaks (DSBs) are the main factor behind carbon-ion radiation therapy (CIRT)-induced cell death. Nuclear interactions along the beam path between the primary carbon ions and targets result in nuclear fragmentation of carbon ions and recoiled particles. These secondary particles travel further distances past the Bragg peak to the tail region, leading to unwanted biological effects that may result in cytotoxicity in critical organs and secondary induced tumors following CIRT. Here, we confirmed that the density of the DSB distributions increases as the cell survival decreases at the Bragg peak and demonstrated that by visualizing DSBs, the various LET fragmentation ions and recoiled particles produced differences in their biological effects in the post-Bragg peak tail regions. This suggests that the density of the DSBs within the high-LET track structures, rather than only their presence, is important for inducing cell death. These results are essential for CIRT treatment planning to limit the amount of healthy cell damage and reducing both the late effect and the secondary tumor-associated risk.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据