4.6 Article

MRI-Based Machine Learning in Differentiation Between Benign and Malignant Breast Lesions

期刊

FRONTIERS IN ONCOLOGY
卷 11, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fonc.2021.552634

关键词

linear discriminant analysis; differential diagnosis; machine learning; breast lesion; texture analysis; MRI

类别

资金

  1. National Natural Science Foundation of China [81472482]
  2. Clinical Technology Innovation and Cultivation Project of Army Military Medical University of China [CX2019LC120]

向作者/读者索取更多资源

This study suggests that a combination of MRI texture analysis and LDA algorithm is effective in discriminating between benign and malignant breast lesions. Different classification models showed promising results in both training and validation groups, demonstrating potential clinical utility.
Background Differential diagnosis between benign and malignant breast lesions is of crucial importance relating to follow-up treatment. Recent development in texture analysis and machine learning may lead to a new solution to this problem. Method This current study enrolled a total number of 265 patients (benign breast lesions:malignant breast lesions = 71:194) diagnosed in our hospital and received magnetic resonance imaging between January 2014 and August 2017. Patients were randomly divided into the training group and validation group (4:1), and two radiologists extracted their texture features from the contrast-enhanced T1-weighted images. We performed five different feature selection methods including Distance correlation, Gradient Boosting Decision Tree (GBDT), least absolute shrinkage and selection operator (LASSO), random forest (RF), eXtreme gradient boosting (Xgboost) and five independent classification models were built based on Linear discriminant analysis (LDA) algorithm. Results All five models showed promising results to discriminate malignant breast lesions from benign breast lesions, and the areas under the curve (AUCs) of receiver operating characteristic (ROC) were all above 0.830 in both training and validation groups. The model with a better discriminating ability was the combination of LDA + gradient boosting decision tree (GBDT). The sensitivity, specificity, AUC, and accuracy in the training group were 0.814, 0.883, 0.922, and 0.868, respectively; LDA + random forest (RF) also suggests promising results with the AUC of 0.906 in the training group. Conclusion The evidence of this study, while preliminary, suggested that a combination of MRI texture analysis and LDA algorithm could discriminate benign breast lesions from malignant breast lesions. Further multicenter researches in this field would be of great help in the validation of the result.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据