4.3 Article

Exosomes Derived from RM-1 Cells Promote the Recruitment of MDSCs into Tumor Microenvironment by Upregulating CXCR4 via TLR2/NF-κB Pathway

期刊

JOURNAL OF ONCOLOGY
卷 2021, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2021/5584406

关键词

-

类别

资金

  1. National Natural Science Foundation of China [81272572]

向作者/读者索取更多资源

Prostate cancer-derived exosomes enhance CXCR4 expression in MDSCs via the TLR2/NF-kappa B signaling pathway, promoting the migration of MDSCs into tumor microenvironment in a CXCR4-CXCL12 axis-dependent manner.
Myeloid-derived suppressor cells (MDSCs) play a critical role in tumor immune escape because of its remarkable immunosuppressive effect. However, the mechanism of MDSCs migrated into tumor microenvironment remains unclear. In this study, we demonstrated the recruitment of MDSCs can be promoted by exosomes derived from prostate cancer cells, which could upregulate chemokine (CXC motif) receptor 4 (CXCR4) via the TLR2/NF-kappa B signalling pathway. Flow cytometry detected that the percentage of MDSCs in the mice spleen and tumor tissue was significantly increased after injection with exosomes via mouse tail vein. Transwell chemotaxis assay showed the recruitment of MDSCs toward the lower chamber was enhanced after stimulation with exosomes, and the migration ability could be inhibited by AMD3100 (a CXCR4 specific inhibitor) both in vivo and in vitro. Additionally, Western blot and flow cytometry verified a remarkably increase of CXCR4 in MDSCs after incubation with exosomes; meanwhile, the protein level of TLR2 and activation of NF-kappa B were also strengthened obviously. Nevertheless, after blocking TLR2 by C29 (a TLR2-specific inhibitor), the expression of p-p65 and CXCR4, which were hypothesized as the downstream target of TLR2, was prominently reduced. In conclusion, prostate cancer-derived exosomes could reinforce CXCR4 expression in MDSCs through the TLR2/NF-kappa B signalling pathway, eventually promoting migration of MDSCs into tumor microenvironment in a CXCR4-CXCL12 axis-dependent manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据