4.6 Article

A recurrent neural network model for biomass gasification chemistry

期刊

REACTION CHEMISTRY & ENGINEERING
卷 7, 期 3, 页码 570-579

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1re00409c

关键词

-

资金

  1. National Supercomputing Mission (NSM) [SP20211026CHNSMX008954]
  2. Ministry of Electronics and Information Technology (MeitY), Government of India
  3. Department of Science and Technology (DST), Government of India

向作者/读者索取更多资源

A GRU-based RNN model was developed for gas-phase reactions in biomass gasification, accurately predicting the situation at different time intervals in the reactor. The use of a compact kinetic model reduced from detailed scheme as a reference greatly reduced the computational cost.
Detailed chemical kinetic models involving hundreds of species and thousands of reactions have recently been developed for biomass thermochemical conversion. The high computational cost of these kinetic models makes them impractical even for simple reactor geometries. In this work, we develop a recurrent neural network (RNN) model for the secondary gas-phase reactions of biomass gasification in an inert environment in the temperature range of 800-1000 degrees C. A gated recurrent unit (GRU) based RNN architecture is used to ensure accurate predictions over the entire range of time in the reactor. A compact kinetic model reduced from a detailed kinetic scheme using an automated reduction algorithm is employed as the reference kinetic scheme for the gas-phase reactions. A comprehensive range of biomass compositions and reactor conditions are used to generate the training data ensuring a wide range of the model applicability. The developed GRU-based RNN model can predict the temporal evolution of important reactants and products during biomass gasification in the freeboard region of a fluidized bed reactor. The model reduces the computational cost associated with the reference kinetic scheme by four orders of magnitude.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据