4.5 Article

Green zero-valent iron nanoparticles for the degradation of amoxicillin

出版社

SPRINGER
DOI: 10.1007/s13762-016-1197-7

关键词

Green zero-valent iron nanoparticles; Amoxicillin; Soil; Water; Fenton; Catalyst; Environmental remediation

资金

  1. European Union (FEDER funds through COMPETE)
  2. National Funds (FCT, Fundacao para a Ciencia e a Tecnologia) [UID/QUI/50006/2013, PTDC/AAG-TEC/2692/2012]
  3. Fundação para a Ciência e a Tecnologia [PTDC/AAG-TEC/2692/2012] Funding Source: FCT

向作者/读者索取更多资源

In the last years, it has been proven that zero-valent iron nanoparticles, including those produced using green methods, are efficient remediation agents for a wide range of target contaminants. However, apart from the known advantages of these green nanomaterials, the knowledge of how they act on distinct contaminants is not yet fully understood and requires further investigation. The objectives of this work were to study the degradation of a common antibiotic, amoxicillin, in water and in a sandy soil using green zero-valent iron nanoparticles (gnZVIs) as reductants and as catalysts for the Fenton reaction. It represents the first study of the use of gnZVI, as alternative for the zero-valent iron nanoparticles produced with sodium borohydride, for the degradation of amoxicillin. The results of the performed tests indicate that gnZVIs have the potential to be used in remediation processes. In both chemical tests, the gnZVI was able to degrade up to 100% of amoxicillin in aqueous solutions, using an amoxicillin/gnZVI molar ratio of 1:15 when applied as a reductant, and an amoxicillin/H2O2/gnZVI molar ratio of 1:13:1 when applied as a catalyst for the Fenton reaction. The soil tests showed that the required molar ratios for near complete degradation were higher in the reduction test (1:150) than in the gnZVI-catalyzed Fenton reaction (1:1290:73). This is possibly due to parallel reactions with the soil matrix and/or limitations of the reagents to reach the entire soil sample. The degradation efficiencies obtained in these tests were 55 and 97% for the reduction and catalyzed Fenton processes, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据