4.6 Article

Reduced Expression of Annexin A6 Induces Metabolic Reprogramming That Favors Rapid Fatty Acid Oxidation in Triple-Negative Breast Cancer Cells

期刊

CANCERS
卷 14, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/cancers14051108

关键词

Annexin A6; breast cancer; metabolic reprogramming; lipid metabolism; tyrosine kinase inhibitors

类别

向作者/读者索取更多资源

The expression status of Annexin A6 (AnxA6) in TNBC cells determines the metabolic adaptations of basal-like and mesenchymal-like TNBC subsets, and has important implications for tumor growth, metastasis, and therapeutic resistance.
Simple Summary The expression status of Annexin A6 (AnxA6) has been shown to influence tumor growth, metastasis, and resistance to therapeutic intervention, but the contribution of this tumor suppressor in the metabolic adaptation of basal-like (AnxA6-low) versus mesenchymal-like (AnxA6-high) TNBC subsets remains unclear. The downregulation of AnxA6 in TNBC cells attenuated mitochondrial respiration, glycolytic flux, and cellular ATP production capacity, resulting in a quiescent metabolic phenotype. The overexpression or chronic lapatinib induced the expression of AnxA6 in AnxA6-low TNBC cells and reversed the quiescent phenotype to a more lipogenic/glycolytic phenotype. Interestingly, AnxA6-depletion was associated with rapid fatty acid uptake and oxidation (lypolytic metabolic phenotype) but decreased lipid droplet accumulation. Our data suggest that the expression status of AnxA6 in TNBC cells is associated with distinct metabolic adaptations of basal-like and mesenchymal-like TNBC subsets in response to cellular stress and/or therapeutic intervention. The ability of cancer cells to alter their metabolism is one of the major mechanisms underlying rapid tumor progression and/or therapeutic resistance in solid tumors, including the hard-to-treat triple-negative breast cancer (TNBC) subtype. Here, we assessed the contribution of the tumor suppressor, Annexin A6 (AnxA6), in the metabolic adaptation of basal-like (AnxA6-low) versus mesenchymal-like (AnxA6-high), as well as in lapatinib-resistant TNBC cells. Using model basal-like and mesenchymal-like TNBC cell lines, we show that TNBC cells also exhibit metabolic heterogeneity. The downregulation of AnxA6 in TNBC cells generally attenuated mitochondrial respiration, glycolytic flux, and cellular ATP production capacity resulting in a quiescent metabolic phenotype. We also show that AnxA6 depletion in mesenchymal-like TNBC cells was associated with a rapid uptake and mitochondrial fatty acid oxidation and diminished lipid droplet accumulation and altered the lipogenic metabolic phenotype of these cells to a lypolytic metabolic phenotype. The overexpression or chronic lapatinib-induced upregulation of AnxA6 in AnxA6-low TNBC cells reversed the quiescent/lypolytic phenotype to a more lipogenic/glycolytic phenotype with gluconeogenic precursors as additional metabolites. Collectively, these data suggest that the expression status of AnxA6 in TNBC cells underlies distinct metabolic adaptations of basal-like and mesenchymal-like TNBC subsets in response to cellular stress and/or therapeutic intervention and suggest AnxA6 as a biomarker for metabolic subtyping of TNBC subsets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据