4.7 Article

Free flexural vibration of geometrically imperfect functionally graded microbeams

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijengsci.2016.05.002

关键词

Functionally graded microbeam; Geometric imperfection; Longitudinal-transverse equations; Flexural frequency; Mode veering; Material length scale parameter; Modified couple stress theory

向作者/读者索取更多资源

Free flexural vibration characteristics of functionally graded (FG) microbeams with geometric imperfection are explored numerically, taking into account the size effect phenomenon based on modified couple stress theory. This theory employs only one material length scale parameter to interpret the size-dependent mechanical behavior of microstructures. The mechanical and physical properties of FG microbeam are assumed to vary smoothly and continuously through the thickness direction according to a power-law distribution. Hamilton's principle in conjunction with Euler-Bernoulli beam theory is used to establish the coupled longitudinal-transverse equations of motion and associated boundary conditions. A weighted -residual method is utilized to evaluate the size-dependent free flexural vibration behavior of FG microbeams with clamped-clamped, clamped-pinned, and pinned-pinned boundary conditions. The influences of different dimensionless parameters i.e., maximum imperfection amplitude-to-length ratio, length-to-thickness ratio, flexural rigidity ratio, and power-law index on the flexural frequencies and mode shapes of FG microbeams are investigated. The mode veering phenomenon is also explored. Finally, the role of longitudinal displacement in the free flexural vibration of the geometrically imperfect FG microbeams is examined. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据