4.5 Article

A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification

期刊

INTERNATIONAL JOURNAL OF ENGINE RESEARCH
卷 17, 期 8, 页码 897-917

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1468087415621805

关键词

Low temperature combustion; gasoline compression ignition; pollutant emissions reduction; advanced combustion engines; high-efficiency engines

资金

  1. Oak Ridge National Laboratory [10.13039/100006228 DE-AC05-00OR22725]

向作者/读者索取更多资源

Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasoline has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this study, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities and challenges associated with the various fuel stratification levels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据