4.7 Article

Biofuel production using Pd/Zn synergistically catalyzed hydrodeoxygenation applied at bio oil extracted in biomass pyrolysis process

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 40, 期 12, 页码 1724-1730

出版社

WILEY
DOI: 10.1002/er.3547

关键词

hydrodeoxygenation; bio-oil upgrading; Pd/C; Zn2+

资金

  1. US Department of Energy through the NC Sun Grant Initiative [DE-FG36-08GO88073]
  2. USDA NIFA [2011-67009-30076]

向作者/读者索取更多资源

Raw bio oil includes multicomponents. In order to avoid the interference between complex reactions, the model compounds, instead of the real bio oil, have been widely used for the study of raw bio-oil upgrade. In this work, the hydrodeoxygenation (HDO) of raw pine pyrolysis bio oil was investigated at 200 degrees C using Pd/Zn synergistic catalysis under hydrogen pressures of 200, 300, and 400 psi, separately. The resulting product included gas, liquid, and coke. The gas was characterized using a gas chromatography. The liquid was characterized using a gas chromatography-mass spectrometry. The results showed that the HDO performance achieved promotion to some extent by the Pd/Zn synergistic catalysis compared with use of Pd/C or Zn2+, independently. The HDO also gave rise to improvements on physicochemical properties of bio oils. Notably, the highest water content (13.16 wt%) revealed that deoxygenation reaction could be promoted by Pd/Zn synergistic catalysis compared with use of Pd/C or Zn2+, independently. More importantly, the highest hydrocarbon yield (19.15% on the base of liquid part) could be obtained by the treatment of 300 psi pressure and 200 degrees C temperature over Zn/Pd/C synergistic catalysis. Copyright (C) 2016 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据