4.7 Article

Melanoma brain metastases that progress on BRAF-MEK inhibitors demonstrate resistance to ipilimumab-nivolumab that is associated with the Innate PD-1 Resistance Signature (IPRES)

期刊

出版社

BMJ PUBLISHING GROUP
DOI: 10.1136/jitc-2021-002995

关键词

melanoma; immunotherapy; central nervous system neoplasms; tumor microenvironment

资金

  1. Australian Government post graduate award
  2. Peter MacCallum Cancer Foundation Discovery Partner Fellowship

向作者/读者索取更多资源

Studies have shown that MBM patients progressing on BRAF-MEKi have lower local response rates to ipilimumab-nivolumab treatment, and MBM patients resistant to BRAF-MEKi also exhibit resistance to second-line ipilimumab-nivolumab. The mechanisms of drug resistance can be identified through whole transcriptome sequencing.
Background Melanoma brain metastases (MBMs) are a challenging clinical problem with high morbidity and mortality. Although first-line dabrafenib-trametinib and ipilimumab-nivolumab have similar intracranial response rates (50%-55%), central nervous system (CNS) resistance to BRAF-MEK inhibitors (BRAF-MEKi) usually occurs around 6 months, and durable responses are only seen with combination immunotherapy. We sought to investigate the utility of ipilimumab-nivolumab after MBM progression on BRAF-MEKi and identify mechanisms of resistance. Methods Patients who received first-line ipilimumab-nivolumab for MBMs or second/third line ipilimumab-nivolumab for intracranial metastases with BRAF(V600) mutations with prior progression on BRAF-MEKi and MRI brain staging from March 1, 2015 to June 30, 2018 were included. Modified intracranial RECIST was used to assess response. Formalin-fixed paraffin-embedded samples of BRAF(V600) mutant MBMs that were naive to systemic treatment (n=18) or excised after progression on BRAF-MEKi (n=14) underwent whole transcriptome sequencing. Comparative analyses of MBMs naive to systemic treatment versus BRAF-MEKi progression were performed. Results Twenty-five and 30 patients who received first and second/third line ipilimumab-nivolumab, were included respectively. Median sum of MBM diameters was 13 and 20.5 mm for the first and second/third line ipilimumab-nivolumab groups, respectively. Intracranial response rate was 75.0% (12/16), and median progression-free survival (PFS) was 41.6 months for first-line ipilimumab-nivolumab. Efficacy of second/third line ipilimumab-nivolumab after BRAF-MEKi progression was poor with an intracranial response rate of 4.8% (1/21) and median PFS of 1.3 months. Given the poor activity of ipilimumab-nivolumab after BRAF-MEKi MBM progression, we performed whole transcriptome sequencing to identify mechanisms of drug resistance. We identified a set of 178 differentially expressed genes (DEGs) between naive and MBMs with progression on BRAF-MEKi treatment (p value <0.05, false discovery rate (FDR) <0.1). No distinct pathways were identified from gene set enrichment analyses using Kyoto Encyclopedia of Genes and Genomes, Gene Ontogeny or Hallmark libraries; however, enrichment of DEG from the Innate Anti-PD1 Resistance Signature (IPRES) was identified (p value=0.007, FDR=0.03). Conclusions Second-line ipilimumab-nivolumab for MBMs after BRAF-MEKi progression has poor activity. MBMs that are resistant to BRAF-MEKi that also conferred resistance to second-line ipilimumab-nivolumab showed enrichment of the IPRES gene signature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据