4.8 Article

Advanced machine learning decision policies for diameter control of carbon nanotubes

期刊

NPJ COMPUTATIONAL MATERIALS
卷 7, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41524-021-00629-y

关键词

-

资金

  1. Air Force Office of Scientific Research [LRIR 16XCOR322]

向作者/读者索取更多资源

In this study, a machine learning planner was used to control the diameters of single-walled carbon nanotubes (SWCNTs), successfully optimizing synthesis conditions to maximize the SWCNT diameters within specific ranges. The optimized growth experiments showed high selectivity compared to unoptimized growth experiments. Interestingly, significantly different synthesis conditions were found for maximizing two diameter ranges, despite their relative closeness.
The diameters of single-walled carbon nanotubes (SWCNTs) are directly related to their electronic properties, making diameter control highly desirable for a number of applications. Here we utilized a machine learning planner based on the Expected Improvement decision policy that mapped regions where growth was feasible vs. not feasible and further optimized synthesis conditions to selectively grow SWCNTs within a narrow diameter range. We maximized two ranges corresponding to Raman radial breathing mode frequencies around 265 and 225 cm(-1) (SWCNT diameters around 0.92 and 1.06 nm, respectively), and our planner found optimal synthesis conditions within a hundred experiments. Extensive post-growth characterization showed high selectivity in the optimized growth experiments compared to the unoptimized growth experiments. Remarkably, our planner revealed significantly different synthesis conditions for maximizing the two diameter ranges in spite of their relative closeness. Our study shows the promise for machine learning-driven diameter optimization and paves the way towards chirality-controlled SWCNT growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据