4.8 Article

Skeletal muscle NOX4 is required for adaptive responses that prevent insulin resistance

期刊

SCIENCE ADVANCES
卷 7, 期 51, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.abl4988

关键词

-

资金

  1. National Health and Medical Research Council (NHMRC) of Australia [APP1162798, APP1082253]
  2. Diabetes Australia [Y18G-TIGT]

向作者/读者索取更多资源

ROS generated by NOX4 in skeletal muscle play a crucial role in promoting muscle function, maintaining redox balance, and preventing the development of insulin resistance. Reductions in NOX4 levels in skeletal muscle contribute to insulin resistance development, affecting exercise capacity and antioxidant defense mechanisms.
Reactive oxygen species (ROS) generated during exercise are considered integral for the health-promoting effects of exercise. However, the precise mechanisms by which exercise and ROS promote metabolic health remain unclear. Here, we demonstrate that skeletal muscle NADPH oxidase 4 (NOX4), which is induced after exercise, facilitates ROS-mediated adaptive responses that promote muscle function, maintain redox balance, and prevent the development of insulin resistance. Conversely, reductions in skeletal muscle NOX4 in aging and obesity contribute to the development of insulin resistance. NOX4 deletion in skeletal muscle compromised exercise capacity and antioxidant defense and promoted oxidative stress and insulin resistance in aging and obesity. The abrogated adaptive mechanisms, oxidative stress, and insulin resistance could be corrected by deleting the H2O2-detoxifying enzyme GPX-1 or by treating mice with an agonist of NFE2L2, the master regulator of antioxidant defense. These findings causally link NOX4-derived ROS in skeletal muscle with adaptive responses that promote muscle function and insulin sensitivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据