4.8 Article

Unleashing nanofabrication through thermomechanical nanomolding

期刊

SCIENCE ADVANCES
卷 7, 期 47, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.abi4567

关键词

-

资金

  1. National Science Foundation through the Advanced Manufacturing Program [CMMI 1901613]

向作者/读者索取更多资源

Advancements in nanotechnology require the development of diverse nanofabrication tools, and revealing and utilizing the thermomechanical nanomolding mechanisms can result in a highly versatile nanofabrication toolbox.
Advancements in nanotechnology require the development of nanofabrication methods for a wide range of materials, length scales, and elemental distributions. Today's nanofabrication methods are typically missing at least one demanded characteristic. Hence, a general method enabling versatile nanofabrication remains elusive. Here, we show that, when revealing and using the underlying mechanisms of thermomechanical nanomolding, a highly versatile nanofabrication toolbox is the result. Specifically, we reveal interface diffusion and dislocation slip as the controlling mechanisms and use their transition to control, combine, and predict the ability to fabricate general materials, material combinations, and length scales. Designing specific elemental distributions is based on the relative diffusivities, the transition temperature, and the distribution of the materials in the feedstock. The mechanistic origins of thermomechanical nanomolding and their homologous temperature-dependent transition suggest a versatile toolbox capable of combining many materials in nanostructures and potentially producing any material in moldable shapes on the nanoscale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据