4.8 Article

Heusler-based synthetic antiferrimagnets

期刊

SCIENCE ADVANCES
卷 8, 期 8, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.abg2469

关键词

-

资金

  1. Oak Ridge National Laboratory Division of Scientific User Facilities

向作者/读者索取更多资源

The researchers have successfully synthesized ultrathin ordered synthetic antiferromagnetic structures by combining atomically ordered RuAl layers and perpendicularly magnetized Heusler layers, expanding the range of synthetic antiferromagnets and magnetic compounds for spintronic technologies.
Antiferromagnet spintronic devices eliminate or mitigate long-range dipolar fields, thereby promising ultrafast operation. For spin transport electronics, one of the most successful strategies is the creation of metallic synthetic antiferromagnets, which, to date, have largely been formed from transition metals and their alloys. Here, we show that synthetic antiferrimagnetic sandwiches can be formed using exchange coupling spacer layers composed of atomically ordered RuAl layers and ultrathin, perpendicularly magnetized, tetragonal ferrimagnetic Heusler layers. Chemically ordered RuAl layers can both be grown on top of a Heusler layer and allow for the growth of ordered Heusler layers deposited on top of it that are as thin as one unit cell. The RuAl spacer layer gives rise to a thickness-dependent oscillatory interlayer coupling with an oscillation period of similar to 1.1 nm. The observation of ultrathin ordered synthetic antiferrimagnets substantially expands the family of synthetic antiferromagnets and magnetic compounds for spintronic technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据