4.8 Review

Main-group elements boost electrochemical nitrogen fixation

期刊

CHEM
卷 7, 期 12, 页码 3232-3255

出版社

CELL PRESS
DOI: 10.1016/j.chempr.2021.10.008

关键词

-

资金

  1. Australian Research Council [FL170100154, DP160104866]
  2. Australian Research Council [FL170100154] Funding Source: Australian Research Council

向作者/读者索取更多资源

In this review, we critically evaluate the application of main-group elements in electrocatalytic nitrogen reduction, present methodologies for N2 activation and HER suppression, and demonstrate the potential of MGEs-based mechanisms for smart design. The conclusion shows that MGEs can significantly enhance electrochemical N2 fixation.
Renewable-energy-derived electrocatalytic nitrogen (N2) reductionreaction (NRR) is practically promising for the production of greenammonia (NH3). However, NRR is limited by low faradic efficiencyand NH3yield because of a high-energy barrier for N2activationand competing hydrogen evolution reaction (HER). In contrastto widely investigated transition metals, main-group elements(MGEs) with manifold physicochemical properties and intrinsicallypoor hydrogen adsorption ability could provide superiority toaddress the challenges mentioned earlier. In this review, we (1)critically assess the use of MGEs in NRR by identifying the functionalmechanism of boosting NRR and suppressing HER, (2) present acomprehensive summary of methodologies for N2activation andHER suppression that are generalizable to advanced catalysts forN2fixation, and (3) show MGEs-based mechanisms that can be judi-ciously applied for smart design of materials, electrolytes, and inter-face for electrocatalytic N2reduction. We conclude that MGEs cansignificantly boost electrochemical N2fixation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据