4.6 Article

Synthesis and Photonics Applications of Afzelechin Conjugated Silver Nanoparticles

期刊

COATINGS
卷 11, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/coatings11111295

关键词

AgNPs; afzelechin; nanoelectronics; surface plasmon resonance; bandgap energy

资金

  1. Taif University, Taif, Saudi Arabia [TURSP-2020/220]
  2. Higher Education Commission (HEC) of Pakistan

向作者/读者索取更多资源

The study focused on synthesizing silver nanoparticles, functionalizing them with afzelechin, and analyzing their differences in surface plasmon resonance and morphology. Characterization was done using UV-Visible spectroscopy and atomic force microscopy.
The silver nanoparticles were synthesized, functionalized with afzelechin and characterized using UV-Visible spectroscopy. A difference of 20 nm was observed in surface plasmon resonance of bare and functionalized silver nanoparticles which indicates afzelechin conjugation with silver nanoparticles. The atomic force microscopy (AFM) technique was used for the determination of the size and morphology of synthesized silver nanoparticles. The afzelechin conjugated silver nanoparticles were spherical and their sizes ranged from 3 to 10 nm with an average size of 8 nm while the bare silver nanoparticles were also spherical and their sizes ranged from 3 to 10 nm with an average size of 6 nm. The average sizes were also calculated by fitting their UV-Visible absorption spectra. Fitting is based on the Mie and Mie Gans models, which deduced that afzelechin conjugated silver nanoparticles were 96.5% spherical and 3.5% spheroidal with an average size of 5 nm while bare silver nanoparticles were 100% spherical with an average size of 4 nm. Both the fitting model as well as the AFM results showed a difference of 3 nm between the sizes of afzelechin conjugated silver nanoparticles while 2 nm differences was observed for bare silver nanoparticles. The band gap energy of afzelechin conjugated silver nanoparticles and bare silver nanoparticles were calculated via Tauc's equation and were found to be 5.1 eV and 5.4 eV, respectively. A difference of 0.3 eV was observed in band gap energies of afzelechin conjugated silver nanoparticles and bare silver nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据