4.7 Article

MdWRKY75e enhances resistance to Alternaria alternata in Malus domestica

期刊

HORTICULTURE RESEARCH
卷 8, 期 1, 页码 -

出版社

NANJING AGRICULTURAL UNIV
DOI: 10.1038/s41438-021-00701-0

关键词

-

资金

  1. National Natural Science Foundation of China [31872074]
  2. National Key R&D Program of China [2019YFD1000100]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

Our findings indicate that MdWRKY75e enhances resistance to A. alternata infection in apples by regulating the biosynthesis of laccase, increasing lignin biosynthesis, and thickening cell walls mainly via the jasmonic acid pathway. Additionally, pathogenesis-related genes and antioxidant-related enzyme activity are involved in the disease resistance of MdWRKY75e transgenic plants.
The Alternaria alternata apple pathotype adversely affects apple (Malus domestica Borkh.) cultivation. However, the molecular mechanisms underlying enhanced resistance to this pathogen in apple remain poorly understood. We have previously reported that MdWRKY75 expression is upregulated by A. alternata infection in 'Sushuai' apples. In this study, we discovered that overexpression of MdWRKY75e increased the resistance of transgenic apple lines to A. alternata infection, whereas silencing this gene enhanced susceptibility to A. alternata infection. Furthermore, we found that MdWRKY75e directly binds to the MdLAC7 promoter to regulate the biosynthesis of laccase and increase the biosynthesis of lignin during A. alternata infection. Moreover, the thickening of the cell wall enhanced the mechanical defense capabilities of apple. In addition, we found that jasmonic acid remarkably induced MdWRKY75e expression, and its levels in transgenic apple lines were elevated. These results indicate that MdWRKY75e confers resistance to the A. alternata apple pathotype mainly via the jasmonic acid pathway and that pathogenesis-related genes and antioxidant-related enzyme activity are involved in the disease resistance of MdWRKY75e transgenic plants. In conclusion, our findings provide insights into the importance of MdWRKY75e for resistance to A. alternata infection in apples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据