4.7 Article

Silencing susceptibility genes in potato hinders primary infection with Phytophthora infestans at different stages

期刊

HORTICULTURE RESEARCH
卷 9, 期 -, 页码 -

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/hr/uhab058

关键词

-

资金

  1. University Fund Wageningen, TKI Uitgangsmaterialen [EZ-2012-07]
  2. National Science Foundation of China [31801420]
  3. Scientific and Technological Project of Henan Province [202102110187]

向作者/读者索取更多资源

The study found that genetic silencing of potato susceptibility genes can enhance resistance against late blight disease. Different mechanisms, including cell death responses and hormone-mediated signaling pathways, are involved in resistance mediated by different gene silencing.
Most potato cultivars are susceptible to late blight disease caused by the oomycete pathogen Phytophthora infestans. Here we report that the genetic loss of host susceptibility is a new source of resistance to prevent or diminish pathogen infection. Previously, we showed that RNAi-mediated silencing of the potato susceptibility (S) genes StDND1, StDMR1, and StDMR6 leads to increased late blight resistance. The mechanisms underlying this S-gene-mediated resistance have thus far not been identified. In this study, we examined the infection process of P. infestans in StDND1-, StDMR1-, and StDMR6-silenced potato lines. Microscopic analysis showed that penetration of P. infestans spores was hampered in StDND1-silenced plants. In StDMR1- and StDMR6-silenced plants, P. infestans infection was arrested at a primary infection stage by enhanced cell death responses. Histochemical staining revealed that StDMR1- and StDMR6-silenced plants display elevated ROS levels in cells at the infection sites. Resistance in StDND1-silenced plants, however, seems not to rely on a cell death response as ROS accumulation was found to be absent at most inoculated sites. Quantitative analysis of marker gene expression suggests that the increased resistance observed in StDND1- and StDMR6-silenced plants relies on an early onset of salicylic acid- and ethylene-mediated signaling pathways. Resistance mediated by silencing StDMR1 was found to be correlated with the early induction of salicylic acid-mediated signaling. These data provide evidence that different defense mechanisms are involved in late blight resistance mediated by functional impairment of different potato S-genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据