4.7 Article

An ARF1-binding factor triggering programmed cell death and periderm development in pear russet fruit skin

期刊

HORTICULTURE RESEARCH
卷 9, 期 -, 页码 -

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/hr/uhab061

关键词

-

资金

  1. China Agriculture Research System of MOF and MARA
  2. Zhejiang Provincial Natural Science Foundation of China [LY15C150003]
  3. Key Project for New Agricultural Cultivar Breeding in Zhejiang Province, China [2021C02066-5]
  4. Special Funds for China Twelfth Five-Year National Science and Technology Project for Pear Molecular Breeding and Germplasm Enhancement [2011AA10020602]

向作者/读者索取更多资源

This study identified a key gene PyPPCD1.1 in cork formation of pear fruit skin, which triggers programmed cell death and regulates periderm development.
Plants have a cuticular membrane (CM) and periderm membrane (PM), which act as barriers to terrestrial stresses. The CM covers primary organs with a continuous hydrophobic layer of waxes embedded in cutin, while the PM includes suberized cells stacked externally to the secondary tissues. The formation of native periderm is regulated by a postembryonic meristem phellogen that produces suberized phellem (cork) outwardly. However, the mechanism controlling phellogen differentiation to phellem remains to be clarified. Here, map-based cloning in a pear F-1 population with segregation for periderm development in fruit skin facilitated the identification of an aspartic acid repeat deletion in Pyrus Periderm Programmed Cell Death 1.1 (PyPPCD1.1) that triggers phellogen activity for cork formation in russet fruit skin of pear. PyPPCD1.1 showed preferential expression in pear fruit skin, and the encoded protein shares a structural similarity to that of the viral capsid proteins. Aspartic acid deletion in PyPPCD1.1 weakened its nuclear localization but increased its accumulation in the chloroplast. The products of both PyPPCD1.1 and its recessive allele directly interact with ADP-ribosylation factor 1 (ARF1). PyPPCD1.1 triggered programmed cell death in an ARF1-dependent manner. Thus, this study identified the switch gene for programmed cell death and periderm development and provided a new molecular regulatory mechanism underlying the development of this trait.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据