4.7 Article

Chlorogenic Acid-Induced Gut Microbiota Improves Metabolic Endotoxemia

期刊

FRONTIERS IN ENDOCRINOLOGY
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fendo.2021.762691

关键词

ob; esity; gut microbiota; chlorogenic acid; lipopolysaccharide; metabolic endotoxemia; insulin resistance

向作者/读者索取更多资源

This study investigated the effects of chlorogenic acid (CGA) found in coffee on obesity and metabolic endotoxemia. CGA was found to prevent weight gain, improve intestinal barrier function, and prevent metabolic disorders and endotoxemia through altering the gut microbiota composition. The study concludes that CGA-induced changes in the gut microbiota play a key role in inhibiting metabolic endotoxemia in high-fat diet-fed mice.
BackgroundCoffee can regulate glucose homeostasis but the underlying mechanism is unclear. This study investigated the preventive and therapeutic effects of chlorogenic acid (CGA), a polyphenol that is found in coffee, on obesity and obesity-related metabolic endotoxemia. MethodMale 4-week-old C57BL/6 mice were fed either normal chow or a high-fat diet or 20 weeks and half the mice in each group were gavaged with CGA. Oral glucose tolerance tests (OGTTs) and insulin tolerance tests (ITTs) were performed. Markers of inflammation and intestinal barrier function were assayed. The composition of the gut microbiota was analyzed by 16S rRNA high-throughput pyrosequencing. The role of CGA-altered microbiota in metabolic endotoxemia was verified by fecal microbiota transplantation. ResultsCGA protected against HFD-induced weight gain, decreased the relative weight of subcutaneous and visceral adipose, improved intestinal barrier integrity, and prevented glucose metabolic disorders and endotoxemia (P <0.05). CGA significantly changed the composition of the gut microbiota and increased the abundance of short chain fatty acid (SCFA)-producers (e.g., Dubosiella, Romboutsia, Mucispirillum, and Faecalibaculum) and Akkermansia, which can protect the intestinal barrier. In addition, mice with the CGA-altered microbiota had decreased body weight and fat content and inhibited metabolic endotoxemia. ConclusionCGA-induced changes in the gut microbiota played an important role in the inhibition of metabolic endotoxemia in HFD-fed mice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据