4.6 Article

Assessing Genomic Diversity and Productivity Signatures in Dianzhong Cattle by Whole-Genome Scanning

期刊

FRONTIERS IN GENETICS
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fgene.2021.719215

关键词

Dianzhong cattle; hybrid; genetic diversity; selection signatures; DDX4

资金

  1. China Agriculture Research System of MOF and MARA [CARS-37]
  2. Program of Yunling Scholar, the Young and Middle-Aged Academic Technology Leader Backup Talent Cultivation Program in Yunnan Province, China [2018HB045]
  3. Yunnan Provincial Major ST Project [2019ZG007, 2019ZG011]

向作者/读者索取更多资源

Dianzhong cattle is a classic Chinese indigenous breed with high genomic diversity and weaker artificial selection compared to Yanbian cattle. Selective sweep analysis revealed positive signals in candidate genes and pathways related to heat resistance, growth and development, fat deposition, and male reproduction.
Dianzhong cattle is a classic Chinese indigenous cattle breed with historical records dating back to 200 BC. But with its genomic differences having not been clearly elucidated, the quest for genomic characterization will be an essential step towards understanding the genomic basis of productivity and adaptation to survival under Chinese farming systems. Here we compared 10 Dianzhong cattle (four newly sequenced and six downloaded) with 29 published genomes of three underlying ancestral populations (Chinese zebu, Indian zebu, and Yanbian cattle) to characterize the genomic variations of Dianzhong cattle. Dianzhong cattle has a high nucleotide diversity (0.0034), second only to Chinese zebu. Together with analyses of linkage disequilibrium decay and runs of homozygosity, Dianzhong cattle displayed higher genomic diversity and weaker artificial selection compared with Yanbian cattle. From a selective sweep analysis by four methods (Fst, pi-ratio, XP-CLR, and XP-EHH), the positive selective signals were mainly manifested in candidate genes and pathways related to heat resistance, growth and development, fat deposition, and male reproduction. Missense mutations were detected in candidate genes, SDS (c.944C > A and p.Ala315Glu), PDGFD (c.473A > G and p.Lys158Arg), and DDX4 (rs460251486, rs722912933, and rs517668236), which related to heat resistance, fat deposition, and spermatogenesis, respectively. Our findings unravel, at the genome-wide level, the unique diversity of Dianzhong cattle while emphasizing the opportunities for improvement of livestock productivity in further breeding programs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据