4.7 Article

Optimisation of three-dimensional hierarchical structures with tailored lattice metamaterial anisotropy

期刊

MATERIALS & DESIGN
卷 210, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2021.110083

关键词

Structural optimisation framework; Lattice metamaterial; Anisotropy; Artificial neural network; Hierarchical structure; Homogenisation method

资金

  1. Aviation Industry Corporation of China (AVIC)
  2. China Scholarship Council
  3. First Aircraft Institute (FAI)

向作者/读者索取更多资源

This paper presents a new framework for optimizing three-dimensional hierarchical structures with tailored relative densities and anisotropy of lattice metamaterials. Numerical homogenization and artificial neural network based surrogate models are used to achieve the optimization, showing that tailored anisotropic lattice metamaterials outperform traditional topology optimization and quasi-isotropic lattice meta materials in structural efficiency.
This paper presents a new framework for optimising three-dimensional hierarchical structures with tailored relative densities and anisotropy of lattice metamaterials. The effective properties of the lattice metamaterials are characterised with numerical homogenisation. Artificial neural network based surrogate models are developed to quantitatively relate lattice struts radii with the effective properties of the lattice metamaterials to improve the computational efficiency of the framework. A new platform integrating user-defined functions with multiple robust and efficient commercial software is developed to implement the proposed optimisation framework. The framework and its implementation are tested using three case studies featuring multiple lattice types and configurations. Case study results show that, compared with results from classical topology optimisation and optimising quasi-isotropic lattice meta materials, optimised structures composed of tailored anisotropic lattice metamaterials achieved superior structural efficiency. This is attributed to the concurrent optimisation of the intermediate relative densities and anisotropy in the lattice metamaterials. The optimised struts radii distributions approximately align with the paths of the principal stresses. It is also found that the orthogonal struts and diagonal struts especially contribute to the bending and torsion resistance of beams, respectively. (c) 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据