4.7 Article

Coupled simulation of thermal-metallurgical-mechanical behavior in laser keyhole welding of AH36 steel

期刊

MATERIALS & DESIGN
卷 212, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2021.110275

关键词

Laser keyhole welding; Numerical simulation; CFD-FEM combined simulation; Stochastic ray tracing; Phase transformation; Vacuum

向作者/读者索取更多资源

A computational fluid dynamics simulation was utilized to obtain temperature data for further metallurgical and mechanical calculations in laser keyhole welding. The simulation included solving governing equations, modeling laser beam scattering and absorption, and implementing a ray-tracing algorithm. The temperature data was then imported into a finite element method-based analysis to simulate thermal-metallurgical mechanical behavior during cooling, and model verification was done through Vickers hardness and residual stress measurements. The experimental and simulation results showed similar trends.
A computational fluid dynamics (CFD) simulation of the molten pool in laser keyhole welding was utilized to acquire temperature data for further metallurgical and mechanical calculations. For the CFD simulation, the governing equations were solved, and the scattering and absorption of the laser beam in the plume were modeled at both the standard atmospheric condition (101,325 Pa) and a vacuum condition (3,000 Pa). A stochastic ray-tracing algorithm was adopted to effectively implement the transmission and scattering of laser bundles of rays. The temperature data from the CFD simulation were then imported to a finite element method (FEM)-based heat conduction analysis to simulate the thermal-metallurgical mechanical behavior during the cooling phase of the weldment. The strain, residual stress, and distortion were calculated using an elastoplastic model based on the phase transformation-dependent material properties. An element deactivation scheme was used to take care of the zero-strength condition of the elements in the molten pool and keyhole region. The Vickers hardness and the residual stress were measured to verify the simulation model, and the experimental and simulation results had a similar tendency. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据